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TORNADOES

More tornadoes in the most extreme
U.S. tornado outbreaks

Michael K. Tippett,"** Chiara Lepore,” Joel E. Cohen***

Tornadoes and severe thunderstorms kill people and

days on which many tornadoes occur (3, 5), and
increases in the annual mean and variance of
the number of tornadoes per outbreak (6). Here,
using extreme value analysis, we find that the
frequency of U.S. outbreaks with many tornadoes
is increasing and that it is increasing faster for
more extreme outbreaks. We model this behavior
by extreme value distributions with parameters
that are linear functions of time or of some in-
dicators of multidecadal climatic variability. Ex-
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from global warming.

n the United States, tomado outbreaks have
substantial effects on human lives and prop-
erty. Tornado outbreaks are sequences of six
or more tornadoes that are rated F1 and
greater on the Fujita scale or rated EF1 and
greater on the Enhanced Fujita scale and that
occur in close succession (7, 2). About 79% of
tornado fatalities during the period 1972 to 2010

occurred in outbreaks (7), and 35 people died in
US. tornado outbreaks in 2015. No significant
trends have been found in either the annual
number of reliably reported tornadoes (3) or of
oulbxezh . Hwe\‘er recent ﬂudles indicate

storms (£), increases in the annual number of | *

treme
with severe thunderstorms show consistent upward
trends, but the trends do not resemble those cur-
rently expected to result from global warming.
Linear trends in the percentiles of the number
of tornadoes per outbreak (Fig. 1) are positive,

faster with percentile probability (Fig. 1B). This
behavior is consistent with the positive trends in
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The frequency of U.S. outbreaks with many tornadoes is
increasing and it is increasing faster
for more extreme outbreaks.

A Annual number of extreme outbreaks B Percentiles of tornadoes per extreme outbreak (12+)
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Fig. 1. Sketch showing the division of the
tornado into four separate regions.
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« Simplify the 3D NS equation

- Assuming helical symmetry of the flow

Axisymmetric steady flow
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Vortex filament
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Tornado Core




EXAMPLES OF VORTEX FILAMENT




* Velocity around a vortex filament, i.e., Biot-Savart law )
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« Core kinematics by self-advection

d r rL
A _ o(q) =

4 = [9(s,1) —q(s, )] X Ivq , s 3
ot Yo (llg(s) - g(s)ID? + )3 q(s",0) 1(s.6)




* Velocity around a vortex filament, i.e., Biot-Savart law

Uw(P):_L L (p-q(s)) x 9q 1
Jo (lp-q(s)|2 22

« Core kinematics by self-advection

9 _ o - L [Hlan-g6 0l x5 0 S
ot 47.Jo (|lg(s) - q(s))? + 2)? q(s’,t) q(s,t)



* Velocity around a vortex filament, i.e., Biot-Savart law
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« Core kinematics by self-advection

9 _ o - L [Hlan-g6 0l x5 0 S
ot 47.Jo (|lg(s) - q(s))? + 2)? q(s’,t) q(s,t)

 Local induction approximation [Hama 1962]
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* Velocity around a vortex filament, i.e., Biot-Savart law
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« Core kinematics by self-advection
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 Local induction approximation [Hama 1962]

99 _ 1A oy L (%, %9 2VI-L
o =Y @+ = | oo x oo |log | —E | X kb
L (" (g9 -q())xdq ,,

Ao (llq(s) — g2 + 2)

binormal



Velocity around a vortex filament, i.e., Biot-Savart law
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Core kinematics by self-advection
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Local induction approximation [Hama 1962]
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Piecewise linear
discretization




Piecewise linear
discretization

Velocity
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Curvature decides everything!




- Boundary layer effect
- Friction forces (viscosity, surface roughness) and centrifugal forces
- High resolution discretization

- Non-penetration condition ntq(s)|s=o = 0
- For fundamental mass conservation law

- Mirroring the filament [Schwarz 1985]







Describe axisymmetric in cylindrical coordinates

- Augment swirl flow (vg) with radial (v,) and axial flow (v,)

Analytical vortex solution derived from the NS equations

. _ T fr/a® r<aq, _
Rankine vortex v, =0, wvg(r) = g{ e r>ar VT 0
r
Burgers vortex v, = —ar, v, =2az, vg= 2—9(7‘)
™r

Shtern’s solution [Shtern et al. 1997]

Ur:l'[Re/r:

Re: Reynolds number

vg = IJI‘/;», I: Cl.rculathn . .
u: Kinematic viscosity

W., W,,, W..: shear constants
Uz = U Wc+Wpr2+WrrRe] .

Funnel shape: zero level set of the Stokes stream function

W, W, W,
¥(r,z) = ML %urél + ﬁrm‘u’z —Re uz = 0.
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* Let user design the Stokes stream function!

Radial and axial velocity
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* No swirl velocity vg
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Continuity equation
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» Couple with swirl velocity induced by the core
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* From a rectilinear core to a curved one
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From a rectilinear core to a curved one

Update the material frame

Compute local cylindrical coordinates at the

given point

Compute the vortex velocity in the local frame

Transform the local velocity to the global frame
cos(0)v, — sin(0)vg

v(x) = (b(s) n(s) t(s)) | sin(0)o, + cos(O)vg |.

0z




* Numerical integration (C++)

- Compute the kinematics of the core

- Randomly sample particles around the core, and advect
them in the vortex velocity field

— Less than 30ms per step for 15k particles
* Procedural refinement (Houdini)

- Import the particles and their attributes

- Add turbulence

- Transport rigid bodies

- Volume rendering
- Example code

- https://qgitlab.inria.fr/geomerix/public/twisterforge







CONTROL OVER THE FUNNEL PROFILE
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CONTROL OVER THE FUNNEL PROFILE




- Spline parameterization allows for easy interpolation in time

Y(r, z Y(r, 7 Y(r, 7

® » time
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INTERPOLATING THE PROFILE G replay with keyframes frozen
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« Contribution

- Aflexible authoring tool for controllable, efficient and plausible tornado animations

» Limitations

- Our vortex model is not physically accurate

The spline-derived vortex violates the NS equation in general
Temporal interpolation can be far from the real dynamics

The core and the funnel are loosely coupled

- Boundary conditions are oversimplified

More to consider, such as viscosity, friction, surface roughness

- Interaction with solid bodies

Two-way coupling, i.e., solids should affect the tornado dynamics as well

Visual
plausibility

Controllability




Thanks!
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