SOMIGLIANA COORDINATES
AN ELASTICITY-DERIVED APPROACH FOR CAGE DEFORMATION

JIONG CHEN, ECOLE POLYTECHNIQUE
FERNANDO DE GOES, PIXAR ANIMATION STUDIOS
MATHIEU DESBRUN, INRIA
• Sculpting brushes using fundamental solutions of elasticity
 - based on regularized Kelvinlets

Multiscale regularization [de Goes and James 2017]

Sharp fall-off [de Goes and James 2019]

Anisotropic and multi-frequency regularization [Chen and Desbrun 2022]
REAL-TIME MESH DEFORMATION

- Sculpting brushes using fundamental solutions of elasticity
 - based on regularized Kelvinlets
 - Meshfree, control of volume change, and extremely fast

Multiscale regularization [de Goes and James 2017]
Sharp fall-off [de Goes and James 2019]
Anisotropic and multi-frequency regularization [Chen and Desbrun 2022]
REAL-TIME MESH DEFORMATION

- Sculpting brushes using fundamental solutions of elasticity
 - based on regularized Kelvinlets
 - Meshfree, control of volume change, and extremely fast
 - Unaware of boundaries!

Multiscale regularization [de Goes and James 2017]

Sharp fall-off [de Goes and James 2019]

Anisotropic and multi-frequency regularization [Chen and Desbrun 2022]
REAL-TIME MESH DEFORMATION

- Cage deformer
 - based on generalized barycentric coordinates
REAL-TIME MESH DEFORMATION

• Cage deformer
 – based on generalized barycentric coordinates
REAL-TIME MESH DEFORMATION

- Cage deformer
 - based on generalized barycentric coordinates
REAL-TIME MESH DEFORMATION

- Cage deformer
 - based on generalized barycentric coordinates

\[x = \sum_{i} \phi_i(x)v_i \]
REAL-TIME MESH DEFORMATION

• Cage deformer
 - based on generalized barycentric coordinates

\[
x = \sum_i \phi_i(x) v_i
\]

\[
\tilde{x}(x) = \sum_i \phi_i(x) \tilde{v}_i
\]
REAL-TIME MESH DEFORMATION

Cage deformer
- based on generalized barycentric coordinates
 - many options available now

\[x = \sum_i \phi_i(x)v_i \]
\[\tilde{x}(x) = \sum_i \phi_i(x)\tilde{v}_i \]

Mean-value coords [Floater 2003; Ju et al. 2005; Thiery et al. 2018]
Harmonic coords [Joshi et al. 2007]
Maximum entropy coords [Hormann and Sukumar 2008]
Complex coords [Weber et al. 2009]
REAL-TIME MESH DEFORMATION

• Cage deformer
 - based on generalized barycentric coordinates
 - many options available now
 - Boundary-aware, meshfree, extremely fast

\[x = \sum_i \phi_i(x)v_i \]
\[\bar{x}(x) = \sum_i \phi_i(x)\bar{v}_i \]
REAL-TIME MESH DEFORMATION

- Cage deformer
 - based on generalized barycentric coordinates
 - many options available now
 - Boundary-aware, meshfree, extremely fast
 - Purely geometric, no elastic feel or volume control

\[
x = \sum_i \phi_i(x) v_i
\]

\[
\tilde{x}(x) = \sum_i \phi_i(x) \tilde{v}_i
\]
• Cage deformer
 - based on generalized barycentric coordinates
 • many options available now
 - Boundary-aware, meshfree, extremely fast
 - Purely geometric, no elastic feel or volume control

\[x = \sum_i \phi_i(x)v_i + \sum_k \psi_k(x)n_k \]

\[\tilde{x}(x) = \sum_i \phi_i(x)\tilde{v}_i + \sum_k \psi_k(x)(c_k\tilde{n}_k) \]

Mean-value coords [Floater 2003; Ju et al. 2005; Thiery et al. 2018]

Harmonic coords [Joshi et al. 2007]

Maximum entropy coords [Hormann and Sukumar 2008]

Complex coords [Weber et al. 2009]

+ Green coordinates [Lipman et al. 2008]
CONTRIBUTIONS

• Inject *elasticity* into cage deformers for fast volumetric deformation
CONTRIBUTIONS

- Inject *elasticity* into cage deformers for fast volumetric deformation
 - Matrix-valued coordinates, extending Green coordinates
CONTRIBUTIONS

- Inject *elasticity* into cage deformers for fast volumetric deformation
 - *Matrix-valued coordinates*, extending Green coordinates
 - Derived from *linear elasticity* and mimicking elastic behaviors
CONTRIBUTIONS

- Inject *elasticity* into cage deformers for fast volumetric deformation
 - Matrix-valued coordinates, extending Green coordinates
 - Derived from *linear elasticity* and mimicking elastic behaviors
 - Invariant under similarity transformations through *corotational* formulation
CONTRIBUTIONS

• Inject *elasticity* into cage deformers for fast volumetric deformation
 − *Matrix-valued coordinates*, extending Green coordinates
 − Derived from *linear elasticity* and mimicking elastic behaviors
 − Invariant under similarity transformations through *corotational* formulation
 − Control over *volume change* and *local bulge*
Green coordinates (GC)
Green coordinates (GC)

PDE:

$$\Delta u = 0$$
Green coordinates (GC)

PDE:
\[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases} \]
Green coordinates (GC)

PDE:
\[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi}\log(r), & d = 2.
\end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial \Omega} \left[\nabla_n G(y, x)u(y) - G(y, x)\nabla_n u(y) \right] d\sigma_y \]
Green coordinates (GC)

PDE: \[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial \Omega} \left[\nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y) \right] d\sigma_y \]
Green coordinates (GC)

PDE:
\[
\Delta u = 0
\]

Fundamental solutions:
\[
G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases}
\]

Boundary reformulation:
\[
u(x) = \int_{\partial \Omega} \left[\nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y) \right] d\sigma_y
\]

\[
u(x) = x
\]

\[
\{ \phi_i(x), \psi_k(x) \} \in \mathbb{R}
\]
FROM GREEN TO SOMIGLIANA

Green coordinates (GC)

PDE:
\[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial \Omega} \nabla_n G(y, x) [u(y) - G(y, x) \nabla_n u(y)] \, d\sigma_y \]

Somigliana coordinates (SC)

\[\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0 \]

\[u(x) = x \]

\[\{\phi_i(x), \psi_k(x)\} \in \mathbb{R} \]
FROM GREEN TO SOMIGLIANA

Green coordinates (GC)

PDE:

\[\Delta u = 0 \]

Fundamental solutions:

\[G(y, x) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases} \]

Boundary reformulation:

\[u(x) = \int_{\partial \Omega} \nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y)] d\sigma_y \]

\[\mathbf{u}(x) = x \]

\[\{ \phi_i(x), \psi_k(x) \} \in \mathbb{R} \]

Somigliana coordinates (SC)

PDE:

\[\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0 \]

Fundamental solutions:

\[K(x, y) = \begin{cases} \frac{a-b}{r} I + \frac{b}{r^3} rr^t, & d = 3, \\ (b-a) \log(r) I + \frac{b}{r^2} rr^t, & d = 2. \end{cases} \]
FROM GREEN TO SOMIGLIANA

Green coordinates (GC)

PDE:
\[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases} \frac{-1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial\Omega} \nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(x) \, d\sigma_y \]

Somigliana coordinates (SC)

\[\Delta u + \frac{1}{1 - 2\nu} \nabla(\nabla \cdot u) = 0 \]

\[\mathcal{K}(x, y) = \begin{cases} \frac{a-b}{r} I + \frac{b}{r^3} rr^t, & d = 3, \\ (b-a) \log(r) I + \frac{b}{r^2} rr^t, & d = 2. \end{cases} \]

\[u(x) = \int_{\partial\Omega} [T(y, x) u(y) + \mathcal{K}(y, x) \tau(y)] \, d\sigma_y \]
FROM GREEN TO SOMIGLIANA

Green coordinates (GC)

PDE:
\[
\Delta u = 0
\]

Fundamental solutions:
\[
G(y, x) = \begin{cases}
-\frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases}
\]

Boundary reformulation:
\[
u(x) = \int_{\partial \Omega} \nabla G(y, x) u(y) - G(y, x) \nabla u(y) \, d\sigma_y
\]

\[
u(x) = x
\]

\[
\{\phi_i(x), \psi_k(x)\} \in \mathbb{R}
\]

Somigliana coordinates (SC)

PDE:
\[
\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0
\]

Fundamental solutions:
\[
K(x, y) = \begin{cases}
\frac{a-b}{r} I + \frac{b}{r^3} rr^t, & d = 3, \\
(b - a) \log(r) I + \frac{b}{r^2} rr^t, & d = 2.
\end{cases}
\]

Boundary reformulation:
\[
u(x) = \int_{\partial \Omega} \left[T(y, x) u(y) + K(y, x) r(y) \right] \, d\sigma_y
\]

Lord Kelvin

Carlo Somigliana
FROM GREEN TO SOMIGLIANA

Green coordinates (GC)

PDE:
\[\Delta u = 0 \]

Fundamental solutions:
\[G(y, x) = \begin{cases}
- \frac{1}{4\pi r}, & d = 3, \\
\frac{1}{2\pi} \log(r), & d = 2.
\end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial\Omega} \nabla G(y, x) u(y) - G(y, x) \nabla u(y) \, d\sigma_y \]

Somigliana coordinates (SC)

PDE:
\[\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0 \]

Fundamental solutions:
\[K(x, y) = \begin{cases}
\frac{a-b}{r} I + \frac{b}{r^3} rr^t, & d = 3, \\
(b - a) \log(r) I + \frac{b}{r^2} rr^t, & d = 2.
\end{cases} \]

Boundary reformulation:
\[u(x) = \int_{\partial\Omega} [T(y, x) u(y) + K(y, x) r(y)] \, d\sigma_y \]

\[\{T_i(x), K_k(x)\} \in \mathbb{R}^{d \times d} \]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) d\sigma_y.
\end{align*}
\]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) \, d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) \, d\sigma_y.
\end{align*}
\]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) d\sigma_y.
\end{align*}
\]

\(T_i\) and \(K_k\) as matrix functions of Poisson ratio \(\nu\)

\[
x = \sum_i T_i(x) v_i + \sum_k K_k(x)(c n_k)
\]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) d\sigma_y.
\end{align*}
\]

\[x = \sum_i T_i(x)v_i + \sum_k K_k(x)(c \mathbf{n}_k)\]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) \, d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) \, d\sigma_y.
\end{align*}
\]

\[\phi_i(y)\]
\[\psi_k(y)\]

\[T_i\]
\[K_k\]

\[v_i\]
\[n_k\]

\[x = \sum_i T_i(x) v_i + \sum_k K_k(x) (c n_k)\]

\[v=0.0\]

\[K_k(x)n_k\]
\[K_k(x)n_k^\perp\]
\[T_i(x)n_i\]
\[T_i(x)n_i^\perp\]
Compute SC w.r.t. a triangulated cage

\[
\begin{align*}
T_i(x) &= \int_{\partial \Omega} T(y, x) \phi_i(y) d\sigma_y, \\
K_k(x) &= \int_{\partial \Omega} K(y, x) \psi_k(y) d\sigma_y.
\end{align*}
\]

\[x = \sum_i T_i(x) v_i + \sum_k K_k(x)(c n_k)\]

\[T_i \text{ and } K_k \text{ as matrix functions of Poisson ratio } \nu\]
$T_i(x)$ and $K_k(x)$ are not rotationally invariant
$T_i(x)$ and $K_k(x)$ are not rotationally invariant

- Typical remedy: corotational formulation

$$\tilde{x}(x) = \left(\sum_i R_i T_i(x) R_i^t \right)^{-1} \left[\sum_i R_i T_i(x) R_i^t \bar{v}_i + \sum_k R_k K_k(x) R_k^t \bar{\tau}_k \right]$$
$T_i(x)$ and $K_k(x)$ are **not** rotationally invariant.

- Typical remedy: corotational formulation

$$\tilde{x}(x) = \left(\sum_i R_i T_i(x) R_i^T \right)^{-1} \left[\sum_i R_i T_i(x) R_i^T \tilde{v}_i + \sum_k R_k K_k(x) R_k^T \tilde{\tau}_k \right]$$
$T_i(x)$ and $K_k(x)$ are not rotationally invariant

- Typical remedy: corotational formulation

$$\tilde{x}(x) = \left(\sum_i R_i T_i(x) R_i^t \right)^{-1} \left[\sum_i R_i T_i(x) R_i^t \tilde{v}_i + \sum_k R_k K_k(x) R_k^t \tilde{\tau}_k \right]$$

$$\tilde{\tau}_k = s_k R_k n_k$$

$$= \left[\frac{2(1 - \nu)}{1 - 2\nu} \eta_k + \frac{2\nu(d - 1)}{1 - 2\nu} \lambda_k \right] R_k n_k$$
\(T_i(x) \) and \(K_k(x) \) are not rotationally invariant

- Typical remedy: corotational formulation

\[
\tilde{x}(x) = \left(\sum_i R_i T_i(x) R_i^T \right)^{-1} \left[\sum_i R_i T_i(x) R_i^T \tilde{v}_i + \sum_k R_k K_k(x) R_k^T \tilde{\tau}_k \right]
\]

\[
\tilde{\tau}_k = s_k R_k n_k
\]

\[
= \left[\frac{2(1-\nu)}{1-2\nu} \eta_k + \frac{2\nu(d-1)}{1-2\nu} \lambda_k \right] R_k n_k
\]

Estimate \(\{R_k, \lambda_k, \eta_k\} \) for each boundary facet
GLOBAL VS. LOCAL ROTATION & TANGENT STRETCHES

Rest pose

Global variant

\[R_k = R_{\text{global}}, \lambda_k = \lambda_{\text{global}} \text{ from the optimal similarity transformation} \]
GLOBAL VS. LOCAL ROTATION & TANGENT STRETCHES

Rest pose

Global variant

Local variant

$R_k = R_{\text{global}}, \lambda_k = \lambda_{\text{global}}$ from the optimal similarity transformation

R_k and λ_k are decided on per facet basis
GLOBAL VS. LOCAL ROTATION & TANGENT STRETCHES

Rest pose

Global variant

In between

Local variant

$R_k = R_{global}, \lambda_k = \lambda_{global}$ from the optimal similarity transformation

blend global and local R_k, λ_k

R_k and λ_k are decided on per facet basis
CURVATURE-BASED NORMAL STRETCHES

- Normal stretching factor η_k for each cage facet
 - No information about out-of-plane deformation
 - E.g., account for curvature change for local bulging
 $$\eta_k = \lambda_k \exp(\gamma \beta_k / (2^{d-1} \pi))$$
 - Compute on-the-fly

Small γ
Large γ
CURVATURE-BASED NORMAL STRETCHES

- Normal stretching factor η_k for each cage facet
 - No information about out-of-plane deformation
 - E.g., account for curvature change for local bulging
 \[\eta_k = \lambda_k \exp\left(\gamma \beta_k / (2^{d-1} \pi)\right) \]
 - Compute on-the-fly

![Diagram showing normal stretching factor calculation and deformation examples]
CURVATURE-BASED NORMAL STRETCHES

- Normal stretching factor η_k for each cage facet
 - No information about out-of-plane deformation
 - E.g., account for curvature change for local bulging
 $$\eta_k = \lambda_k \exp(\gamma \beta_k / (2^{d-1}\pi))$$
 - Compute on-the-fly

- Our choice of R_j, λ_j, η_j keeps the deformation invariant under similarity transformations
 $$\mathbf{x}(sR\mathbf{x} + t) = sR\mathbf{x}(\mathbf{x}) + t$$
• SC is equivalent to GC in 2D, for $\nu = \infty$, and $\gamma = 0$
• SC is equivalent to GC in 2D, for $\nu = \infty$, and $\gamma = 0$

2D SC deformation with $\nu = \infty$, $\gamma = 0$

\[
\bar{x}(x) = \frac{1}{2\pi} \sum_{e} \int_{0}^{L_e} \left(\frac{r t}{r^2} I + \frac{1}{r^2} (nr' - rn') \right) \tilde{y} \, d\sigma_y
\]
\[
= \frac{1}{2\pi} \sum_{e} \int_{0}^{L_e} \frac{1}{r^2} \begin{pmatrix} r_1 n_1 + r_2 n_2 & 0 \\ 0 & r_1 n_1 + r_2 n_2 \end{pmatrix} \tilde{y} \, d\sigma_y
\]
\[
+ \begin{pmatrix} 0 & r_2 n_1 - r_1 n_2 \\ r_1 n_2 - r_2 n_1 & 0 \end{pmatrix} \tilde{y} \, d\sigma_y
\]

Expressed in complex numbers

\[
\frac{1}{2\pi} \int_{0}^{L_e} \frac{r_1 n_1 + r_2 n_2 + i(r_1 n_2 - r_2 n_1)}{r^*r} \tilde{y} \, d\sigma_y
\]
\[
= \frac{1}{2\pi} \int_{0}^{L_e} \frac{(r_1 - i r_2)(n_1 + i n_2)}{r^*r} \tilde{y} \, d\sigma_y
\]
\[
= \frac{1}{2\pi} \int_{0}^{L_e} \frac{r^* r \tilde{y}}{r^*r} \tilde{y} \, d\sigma_y = \frac{1}{2\pi} \int_{0}^{L_e} \frac{i \cdot \tilde{y}}{r} \, d\sigma_y
\]
\[
= \frac{1}{2\pi} \int_{0}^{L_e} \frac{\tilde{y}}{r} \, d\sigma_y
\]

Through Cauchy integral formula

\[
g_{s,j}(x) = \sum_{j=1}^{i} C_j(z) f_j
\]
\[
C_j(z) = \frac{1}{2\pi} \left(\frac{B_{s,j}(z)}{A_{j,s}} \log \left(\frac{B_{s,j}(z)}{B_{j,s}(z)} \right) - \frac{B_{j,s}(z)}{A_{j,s}} \log \left(\frac{B_{j,s}(z)}{B_{s,j}(z)} \right) \right)
\]

Cauchy-Green complex barycentric coordinates

Theorem 3: Lipman's 2D Green coordinates [LLCO08] are identical to discrete Cauchy coordinates.

[Weber et al. 2009]
\[K_k(x) = \int_{\Delta_k} K(y, x) \, d\sigma_y = 2|\Delta_k| \int_0^1 \, d\alpha \int_0^{1-\alpha} \, d\beta \, K(y(\alpha, \beta), x) \]
\[
K_k(x) = \int_{\Delta_k} \mathcal{K}(y, x) \, d\sigma_y = 2|\Delta_k| \int_0^1 d\alpha \int_0^{1-\alpha} d\beta \, \mathcal{K}(y(\alpha, \beta), x)
\]

\[
2|\Delta_k| \sum_j w_j \left(\frac{a-b}{r(\alpha_j, \beta_j)} I + \frac{b}{r^3(\alpha_j, \beta_j)} r(\alpha_j, \beta_j) r^t(\alpha_j, \beta_j) \right)
\]
IMPLEMENTATION

\[
K_k(x) = \int_{\Delta_k} K(y, x) \, d\sigma_y = 2|\Delta_k| \int_0^1 \alpha \int_0^{1-\alpha} \beta K(y(\alpha, \beta), x)
\]

- #query points: 39k
- #quadratures per face: 7500
- #cage faces: 184

\[2|\Delta_k| \sum_j w_j \left(\frac{a - b}{r(\alpha_j, \beta_j)} \mathbf{I} + \frac{b}{r^3(\alpha_j, \beta_j)} \mathbf{r}(\alpha_j, \beta_j)\mathbf{r}^t(\alpha_j, \beta_j) \right)\]

\(\approx\) Coord. computation time: 1.5s
RESULTS
VOLUME PRESERVING VS. LOCAL BULGING

- Better volume preservation (ν)
- Larger local bulging (γ)

Input GC

$v=0, \gamma=0$
$v=0.3, \gamma=0$
$v=0.48, \gamma=0$

$v=0, \gamma=17$
$v=0.3, \gamma=12$
$v=0.48, \gamma=3$
2D COMPARISONS

input

MVC

GC

Ours (global)
2D COMPARISONS
3D COMPARISONS

input

MVC

GC

Ours
3D COMPARISONS
COMPARISONS

BEM

Ours (Global variant)

BEM

Ours (Global variant)

input
FUTURE WORKS

- Cage triangulation may break the symmetry
 - Compute SC on quad meshes
 - Adopt other bulging factors less sensitive to the triangulation
FUTURE WORKS

• Cage triangulation may break the symmetry
 – Compute SC on quad meshes
 – Adopt other bulging factors less sensitive to the triangulation

• Accelerate SC computations
 – Adaptive quadrature rules for far- and near-field evaluations
 – Derive closed-form expressions
FUTURE WORKS

• Cage triangulation may break the symmetry
 − Compute SC on quad meshes
 − Adopt other bulging factors less sensitive to the triangulation

• Accelerate SC computations
 − Adaptive quadrature rules for far- and near-field evaluations
 − Derive closed-form expressions

• Space-time cages for real-time animation editing