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In this paper, we present a novel cage deformer based on elasticity-
derived matrix-valued coordinates. In order to bypass the typical shearing
artifacts and lack of volume control of existing cage deformers, we
promote a more elastic behavior of the cage deformation by deriving our
coordinates from the Somigliana identity, a boundary integral formulation
based on the fundamental solution of linear elasticity. Given an initial
cage and its deformed pose, the deformation of the cage interior is
deduced from these Somigliana coordinates via a corotational scheme,
resulting in a matrix-weighted combination of both vertex positions and
face normals of the cage. Our deformer thus generalizes Green
coordinates, while producing physically-plausible spatial deformations
that are invariant under similarity transformations and with interactive
bulging control. We demonstrate the efficiency and versatility of our
method through a series of examples in 2D and 3D.

Abstract

Real-time deformation techniques:

• Sculpting brushes via fundamental solutions of elasticity (Kelvinlets)

• Cage deformers based on generalized barycentric coordinates

Background

Our Somigliana coordinates has a similar derivation as Green coordinates based on the Somiglina identity for linear elasticity, an analogue to the Green’s 
third identity for the harmonic equation. 

Somigliana Coordinates

The corotational formulation is derived to ensure the cage deformation is invariant to similarity transformations.

Corotational formulation

Implementations
We apply quadratures to compute SC over a triangulated cage.
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