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Abstract Somigliana Coordinates Implementations

In this paper, we present a novel cage deformer based on elasticity- Our Somigliana coordinates has a similar derivation as Green coordinates based on the Somiglina identity for linear elasticity, an analogue to the Green’s We apply quadratures to compute SC over a triangulated ce;ge.
derived matrix-valued coordinates. In order to bypass the typical shearing third identity for the harmonic equation. ( [
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promote a more elastic behavior of the cage deformation by deriving our y 1 4 r .
coordinates from the Somlghana.ldentlty,' a boundalty‘lntegr'al formu'la"uf)n PDE: Au=0 Au + V(V-u)=0 _ K, (x) = J K(y, x)y, (y)do-y_ )

based on the fundamental solution of linear elasticity. Given an initial 1-2v 0Q Vi (y)
cage and its deformed pose, the deformation of the cage interior is ( 1
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resulting in a matrix-weighted combination of both vertex positions and solutions: G(y,x) =« 1 K(x,y) = r r3 g o Ml |10
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bulging control. We. demonstrate the efficiency and versatility of our reformulation: u(x) = ja s [VaG (y, x)|u(y ) = Gy, 0)Vyu(y)] do_}’ u(x) = L Q[T(y ’ x). ) + Xy, x)z(y)] do_)’ Carlo Somigliana Comparisons

method through a series of examples in 2D and 3D.
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* Sculpting brushes via fundamental solutions of elasticity (Kelvinlets)
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Corotational formulation
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The corotational formulation is derived to ensure the cage deformation is invariant to similarity transformations.
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