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In this paper, we present a novel cage deformer based on elasticity-derived

matrix-valued coordinates. In order to bypass the typical shearing artifacts

and lack of volume control of existing cage deformers, we promote a more

elastic behavior of the cage deformation by deriving our coordinates from

the Somigliana identity, a boundary integral formulation based on the fun-

damental solution of linear elasticity. Given an initial cage and its deformed

pose, the deformation of the cage interior is deduced from these Somigliana

coordinates via a corotational scheme, resulting in a matrix-weighted combi-

nation of both vertex positions and face normals of the cage. Our deformer

thus generalizes Green coordinates, while producing physically-plausible

spatial deformations that are invariant under similarity transformations

and with interactive bulging control. We demonstrate the efficiency and

versatility of our method through a series of examples in 2D and 3D.
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1 INTRODUCTION

Cage deformers are ubiquitously used to generate high-quality spa-

tial deformations driven by the articulation of an enclosing łcagež

mesh. The majority of cage deformers are based on precomputed or

closed-form generalized barycentric coordinates that interpolate the

cage vertices while reproducing affine transformations [Hormann

and Sukumar 2017]. However, these interpolatory coordinates tend

to induce undesirable shearing artifacts. This motivated Lipman

et al. [2008] to define the so-called Green coordinates using both

cage vertices and normals as a means to favor quasi-conformal

maps, thus reducing shearing and leading to better detail preserva-

tion. Unfortunately, the quasi-conformality of Green coordinates is

notorious for causing significant and undesirable volume scaling,

curbing their practical appeal. While subsequent work has partially

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA, https:
//doi.org/10.1145/3588432.3591519.

input

𝜈 =0.0
𝛾 =0.0

𝜈 =0.0
𝛾 =18.5

𝜈 =0.48
𝛾 =0.0

𝜈 =0.48
𝛾 =1.2

Fig. 1. Somigliana coordinates. Given an initial cage (top inset) and its

deformed pose, our novel cage deformer promotes a more elastic behavior

of the cage deformation than previous works by leveraging an elasticity-

derived matrix-weighted combination of both vertex positions and face

normals of the cage. A Poisson ratio 𝜈 and bulging scale 𝛾 can be adjusted

to offer control over local and global volume change.

alleviated these volume changes by combining Green coordinates

with distortion minimization [Ben-Chen et al. 2009; Martin et al.

2009], it comes at the cost of iterative global solves, negating the

attractive efficiency of cage deformers.

The usual lack of bulging and volume control in cage deformers also

conflicts with the common desire to produce physically plausible

deformation. For instance, many authors have employed quasi-static

elastic simulations to provide more natural poses [McAdams et al.

2011; Smith et al. 2018]. However, these approaches are computation-

ally expensive since they require volume discretizations and non-

convex numerical optimizations. Model reduction techniques can

accelerate elastic simulations by precomputing deformation modes

[Barbič and James 2005] and multi-domain subspaces [Barbič and

Zhao 2011] at the cost of increased memory footprint. The boundary

element method (BEM) offers instead a surface-only representation
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to efficiently derive volume deformations of elastic solids [James

and Pai 1999, 2003], but its use of dense linear solves is incompat-

ible with real-time deformation. Recently, the design of sculpting

brushes providing elastic deformation with interactive volume con-

trol through regularized Kelvinlets [de Goes and James 2017] has

quickly gained popularity [Adobe 2022; Blender 2022], but these

deformations are only local and oblivious to boundaries. While this

limitation can be alleviated by constraining multiple regularized

Kelvinlets, it comes again at the cost of a dense linear solve.

In this work, we introduce new cage coordinates that produce spa-

tial deformation with interactive bulging and volume control. Our

method is based on a corotational extension to an integral form

of the static solution to the linear elasticity equation over a closed

domain. Since this integral formulation is often referred to as the

Somigliana identity, we name our new cage coordinates Somigliana

coordinates. Our approach leads to a novel set of matrix-valued co-

ordinates that mimic the elasticity response to displacements of

the boundary, while still reproducing global similarity transforma-

tions. We show that these matrices can be efficiently precomputed

from vertices and faces of a cage mesh and rapidly evaluated at

arbitrary space locations, thus making our technique free of any

volumetric discretization, numerical solve, or large memory foot-

print. We also exploit local and global geometric estimates based on

the rest and posed cages in order to deduce boundary tractions and

provide interactive bulging control. As a result, our Somigliana co-

ordinates complement existing elasticity techniques by generating

physically-plausible deformations entirely driven by the cage pose.

2 RELATED WORK

Generating spatial deformations quickly and intuitively has received

considerable attention over the past four decades. For conciseness,

we now review prior methods that are closely related to ours.

Generalized Barycentric Coordinates. Ever since the work of [Meyer

et al. 2002], there has been growing interest in constructing gener-

alizations of Möbius’ simplicial barycentric coordinates to polygons

and polyhedra for graphics applications [Floater 2015; Hormann

and Sukumar 2017]. While many coordinates only apply to the re-

stricted case of convex polytopes [Warren et al. 2007; Budninskiy

et al. 2016], mean value coordinates are far more versatile since they

can be computed in closed-form for cages of arbitrary shape [Floater

2003; Ju et al. 2005; Thiery et al. 2018]. Alternative approaches have

also been proposed to enforce positive coordinates, hence reducing

artifacts near concavities [Joshi et al. 2007; Lipman et al. 2007; Hor-

mann and Sukumar 2008]; but they require either large memory

consumption or customized numerical schemes. While generalized

barycentric coordinates are interpolatory and affine-invariant by

definition, our approach favors non-interpolatory coordinates that

offer instead elasticity-derived volume control.

Green coordinates. To remove the usual shearing artifacts of interpo-

latory methods, Lipman et al. [2008] introduced Green coordinates

by combining contributions of both cage vertices and faces. This ap-

proach was later extended to quadrangulated cage meshes [Thiery

and Boubekeur 2022]. The resulting deformations are conformal

in 2D and quasi-conformal in 3D and, thus, tend to present unrea-

sonable volume scaling. Subsequent work [Ben-Chen et al. 2009;

Martin et al. 2009] have mitigated these volume changes based on

distortion optimizations at the cost of added computational com-

plexity. In contrast, we incorporate volume control by deriving new

coordinates based on the fundamental solutions of linear elasticity.

Complex Coordinates. As shown in [Weber et al. 2009], Green co-

ordinates in 2D can be expressed as complex-valued coordinates

assigned solely to vertex positions of a cage polygon. This complex

representation led to a series of planar deformation techniques that

account for boundary angle and pointwise constraints as well as

bounded distortionÐsee [Weber 2017] and references therein. How-

ever, complex coordinates are limited to 2D and thus cannot express

the bulging effects exhibited by elastic deformations in 3D.

Elastostatics. Ourwork draws inspiration from the quasi-static meth-

ods for linear elasticity. In [James and Pai 1999, 2003] for instance,

the boundary element method (BEM) was leveraged to solve the

equation of linear elasticity by deducing boundary tractions from

surface displacements while avoiding volumetric discretization.

However, BEM-based schemes require dense linear solves and re-

peated matrix updates, hampering their use for real-time editing. A

faster alternative is the use of regularized Kelvinlets [de Goes and

James 2017], which are sculpting brushes offering local and natural-

looking elastic deformation. More recently, regularized Kelvinlets

were extended to elasto-dynamics [de Goes and James 2018], sharp

falloffs [de Goes and James 2019], and anisotropic materials [Chen

and Desbrun 2022]. Unfortunately, these sculpting brushes ignore

boundaries and, therefore, are poorly adapted to cage-based editing.

Aswewill show, our approach forms a bridge between priormethods

by designing a cage deformerwith vertex and face-based coordinates

that inherently produce elasticity-derived deformation.

3 BACKGROUND

We begin the exposition of our contributions by reviewing the basics

of linear elastostatics upon which our formulation is built Ð readers

can refer to [Slaughter 2012] for more details about linear elasticity.

Hereafter, we consider a domain Ω ⊂ R𝑑 (𝑑 = 2, 3) describing a

homogeneous and isotropic elastic material bounded by a piecewise-

smooth manifold 𝜕Ω. By convention, we use 𝒏 : 𝜕Ω→R𝑑 to denote

the outward unit normal field over the domain boundary 𝜕Ω.

3.1 Elastostatics

Equilibrium in linear elasticity is determined by a displacement

𝒖 :Ω→R𝑑 satisfying the Navier-Cauchy equation:

𝜇Δ𝒖 +
𝜇

1 − 2𝜈
∇ (∇·𝒖) = 𝒃, (1)

where elastic shear modulus 𝜇>0 indicates material stiffness, Pois-

son ratio 𝜈 < 1/2 dictates material compressibility, and 𝒃 :Ω→R𝑑

is the external body load. Given a solution of Eq. (1), we can also

quantify the force distribution at any point 𝒙 ∈Ω using the Cauchy

stress tensor field 𝝈 :Ω→R𝑑×𝑑 , which is expressed as

𝝈 (𝒙) = 𝜇
[
∇𝒖 (𝒙) + ∇𝒖 (𝒙)𝑡

]
+

2𝜇𝜈

1 − 2𝜈
[∇·𝒖 (𝒙)] 𝑰 . (2)
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Fig. 2. Extreme face lift. For a simple rest cage enclosing a face mesh (top left), the same posed cage can produce a diverse set of results depending on the

user-selected combination of Poisson ratio 𝜈 and bulging scale 𝛾 of our cage deformer Ð here using the global variant.

A traction vector at a point 𝒙 ∈ Ω is then obtained by evaluating

the stress along any desired direction; in particular, the traction at a

boundary point 𝒙 ∈ 𝜕Ω is defined via 𝝉 (𝒙)=𝝈 (𝒙)𝒏(𝒙).

3.2 Fundamental Solutions

An important special case of Eq. (1) is when the domain is un-

bounded (i.e., Ω≡R𝑑 ) and is under a body load of the form 𝒃 (𝒙)=

𝛿 (𝒙−𝒙0)𝒇 centered at point 𝒙0 ∈Ω for a given force vector 𝒇 . The

response of Eq. (1) to this point load is then 𝒖 (𝒙)=K(𝒙, 𝒙0)𝒇 , where

the kernel function K defines the fundamental solution of linear

elasticity, also known as the Kelvinlet [Kelvin 1848]. Denoting the

relative position vector 𝒓 =𝒙−𝒙0 and its norm 𝑟 = ∥𝒓 ∥, the Kelvinlet

solution is a matrix-valued function K :Ω×Ω→R𝑑×𝑑 expressed as:

K(𝒙, 𝒙0) =




(𝑎 − 𝑏)

𝑟
𝑰 +

𝑏

𝑟3
𝒓𝒓𝑡 in 3D,

(𝑎 − 𝑏) ln(1/𝑟 )𝑰 +
𝑏

𝑟2
𝒓𝒓𝑡 in 2D,

(3)

with coefficients 𝑎 = 1/𝜇 (2𝑑−1𝜋) and𝑏 = 𝑎/4(1−𝜈) which concisely

encapsulate the terms dependent on the material parameters 𝜇 and

𝜈 in dimension 𝑑 =2, 3.

We can also employ Eq. (2) to evaluate the traction associated with

the Kelvinlet solution, thus defining the traction fundamental solu-

tion as a matrix-valued function T :Ω×Ω→R𝑑×𝑑 written as:

T (𝒙, 𝒙0) =
𝜇 (𝑎 − 2𝑏)

𝑟𝑑

[
(𝒏𝑡 𝒓)𝑰 + 𝒏𝒓𝑡 − 𝒓𝒏𝑡

]
+
2𝜇𝑏𝑑

𝑟𝑑+2
(𝒏𝑡 𝒓)𝒓𝒓𝑡 . (4)

Notice that the first terms in Eqs. (3) and (4) resemble, respectively,

the fundamental solution of the Laplacian equation and its normal

derivative, but they are now combined with extra terms that control

volume compression. Moreover, Eq. (3) makes use of both material

parameters 𝜇 and 𝜈 , while Eq. (4) depends only on the Poisson ratio

𝜈 , since 𝜇 gets canceled when multiplied by 𝑎 or 𝑏.

3.3 Somigliana identity

The fundamental solutions of linear elasticity given by Eqs. (3) and

(4) play a central role in the evaluation of the elastostatic solu-

tion over bounded domains. Using the so-called Somigliana iden-

tity [Somigliana 1885; Cruse and Suwito 1993], we can express the

solution 𝒖 (𝒙) of Eq. (1) at any point 𝒙 ∈Ω in integral form as

𝒖 (𝒙)=

∫

𝜕Ω
[T (𝒚, 𝒙)𝒖 (𝒚)+K(𝒚, 𝒙)𝝉 (𝒚)] d𝜎𝒚+

∫

Ω

K(𝒚, 𝒙)𝒃 (𝒚)d𝜎𝒚 . (5)

It is worth pointing out that the first term of Eq. (5) is a boundary

integral that involves both displacements and traction vectors, while

the second term is a volume integral accounting for body loads.

Note also that the boundary integral in Eq. (5) depends solely on

the Poisson ratio 𝜈 , while the stiffness 𝜇 is simply a global scaling

that counteracts the body loads.

4 OUR CAGE DEFORMER

Equipped with the Somigliana identity, we can now delve into the

formulation of our elasticity-derived cage deformer.

4.1 Cage Discretization

We discretize the domain Ω as a simplicial mesh (the łcagež) forming

a closed triangulated manifold mesh in 3D (or a simple polygon in

2D) with 𝑛 vertices and𝑚 faces (where𝑚 =𝑛 in 2D). Such a cage

mesh can be created manually using typical polygonal modeling

tools or automatically [Xian et al. 2012; Le and Deng 2017]. We

denote the positions of cage vertices by {𝒗𝑖 }𝑖=1..𝑛 and the normals

of cage faces by {𝒏 𝑗 } 𝑗=1..𝑚 . Any point 𝒙 on the cage boundary

𝜕Ω can then be expressed using a linear combination of nearby

cage vertices, i.e., 𝒙 =
∑
𝑖 𝜙𝑖 (𝒙) 𝒗𝑖 , where 𝜙𝑖 is piecewise-linear basis

function associated with cage vertex 𝑖 . Similarly, we can write the

outward unit normal at 𝒙 ∈ 𝜕Ω as 𝒏(𝒙) =
∑
𝑗 𝜓 𝑗 (𝒙) 𝒏 𝑗 , where 𝜓 𝑗 is

a piecewise-constant basis function corresponding to cage face 𝑗 .

Finally, we will denote by Ω̃ the deformed cage with vertices and

normals indicated through {�̃�𝑖 } and {�̃� 𝑗 }, respectively.

4.2 Somigliana Coordinates

We begin our formulation by noticing that, when considering the

interior of cage Ω as an elastic domain, the identity map 𝒖 (𝒙)= 𝒙 is

a trivial solution of Eq. (1) in the absence of body load, i.e., when

𝒃 (𝒙)=0. As a result, we can employ the Somigliana identity from

Eq. (5) to represent any point 𝒙 inside the cage Ω as a linear combi-

nation of boundary points and normals, yielding:

𝒙 =

∫

𝜕Ω
[T (𝒚, 𝒙)𝒚 + 𝑐K(𝒚, 𝒙)𝒏(𝒚)] d𝜎𝒚 , (6)
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Fig. 3. Visualizing 2D kernels𝑲𝒋 &𝑻𝒊 .We visualize these two elastostatic

kernels via the vector fields obtained by multiplying the edge-based matrix

function𝐾𝑗 (𝒙) (resp., the vertex-basedmatrix function𝑇𝑖 (𝒙)) by the normal

𝒏 𝑗 of its associated cage edge (resp., the normal 𝒏𝑖 of its associated cage

vertex) and its 90◦ rotation, for two different Poisson ratios. Colors indicate

magnitude, while directions of the vector fields are conveyed via particle

tracing, exhibiting clear differences depending on compressibility.

where the constant 𝑐 =2𝜇 [1 + 𝑑𝜈/(1 − 2𝜈)] comes from the bound-

ary traction 𝝉 (𝒚) given by Eq. (2) for 𝒖 (𝒙) = 𝒙 in R𝑑 (𝑑 = 2, 3). By

expanding Eq. (6) in terms of cage vertices {𝒗𝑖 } and normals {𝒏 𝑗 },

we can rewrite the coordinates of any point 𝒙 inside the cage as

𝒙 =
∑︁

𝑖
𝑇𝑖 (𝒙) 𝒗𝑖 +

∑︁
𝑗
𝐾𝑗 (𝒙)

(
𝑐 𝒏 𝑗

)
, (7)

with matrix coefficients per cage vertex 𝑖 and face 𝑗 defined through




𝑇𝑖 (𝒙) =

∫

𝜕Ω
T (𝒚, 𝒙)𝜙𝑖 (𝒚)d𝜎𝒚 ,

𝐾𝑗 (𝒙) =

∫

𝜕Ω
K(𝒚, 𝒙)𝜓 𝑗 (𝒚)d𝜎𝒚 .

(8a)

(8b)

Since these matrix functions are derived from the Somigliana iden-

tity in Eq. (6), we name them Somigliana coordinates. To illustrate

their built-in elastic nature, Fig. 3 visualizes in 2D the vector fields

(𝐾𝑗 (𝒙)𝒏 𝑗 , 𝐾𝑗 (𝒙)𝒏 𝑗
⊥) and (𝑇𝑖 (𝒙)𝒏𝑖 ,𝑇𝑖 (𝒙)𝒏𝑖

⊥) inside a polygonal

cage for different Poisson ratios. Notice that these pairs of vector

fields clearly exhibit anisotropic falloffs and form smoothly-varying

frames oriented towards their respective cage elements, induced by

their dependence on the fundamental solution of elastostatics. This

should not come as a surprise since these matrix functions are in

fact used in BEM to find the internal deformation once all boundary

tractions have been computed through a dense linear system (see,

e.g., [James and Pai 1999, 2003]).

Moreover, by noting that any constant displacement field is a trivial

solution of Eq. (1) when 𝒃 (𝒙)=0, we have
∑
𝑖 𝑇𝑖 (𝒙)= 𝑰 for any point

𝒙 ∈ Ω, thus ensuring that the vertex-based matrices {𝑇𝑖 } form a

partition of unity. With this property, Eq. (7) can be rewritten as
∑︁

𝑖
𝑇𝑖 (𝒙) (𝒗𝑖 − 𝒙) +

∑︁
𝑗
𝐾𝑗 (𝒙)

(
𝑐 𝒏 𝑗

)
= 0. (9)

Therefore, we can interpret the Somigliana coordinates of a rest cage

Ω evaluated at any point 𝒙 ∈Ω as a balance between the tractions

produced by the vectors 𝒗𝑖 − 𝒙 and the Kelvinlet solution induced

by the cage’s boundary tractions 𝑐 𝒏 𝑗 .

4.3 Cage Deformer via Corotational Formulation

While the Somigliana coordinates in Eqs. (8) inherit the local elastic

behavior we seek out, their tensorial nature makes them dependent

on the global orientation and scaling of the undeformed cage and,

consequently, they can not reproduce similarity transformations.

To address this issue, we propose to factor out the rotational com-

ponent of the cage deformations by adapting the usual corotational

formulation of elasticity to Somigliana coordinates.

In addition to the rest and posed cage Ω and Ω̃, assume for now

that a rotation matrix 𝑅 𝑗 and a symmetric strain matrix 𝑆 𝑗 are given

for each cage face 𝑗 Ð we will detail different options to compute

these matrices from the deformed cage later in ğ4.4. From the face

rotations, we can deduce a rotation matrix 𝑅𝑖 per cage vertex 𝑖 by

averaging its neighboring face rotations weighted by their areas.

The only condition we impose to the face rotation-strain matrices

{𝑅 𝑗 , 𝑆 𝑗 } is that, if the posed cage is a similarity transformation of

the rest cage (i.e., Ω̃=𝑠𝑅Ω+t with 𝑅 being a rotation, t a translation,

and 𝑠 a scalar), then 𝑅 𝑗 = 𝑅 ∀𝑗 and 𝑆 𝑗 = 𝑠𝑰 ∀𝑗 , i.e., all rotations

match and all strains are the same uniform scaling. This condition

will guarantee similarity invariance of our cage deformer.

We define the deformed position �̃� of a rest point 𝒙 ∈Ωwith Somigliana

coordinates {𝑇𝑖 (𝒙), 𝐾𝑗 (𝒙)} via a corotational extension of Eq. (9):
∑︁

𝑖
𝑅𝑖𝑇𝑖 (𝒙)𝑅

𝑡
𝑖 (�̃�𝑖 − �̃�) +

∑︁
𝑗
𝑅 𝑗𝐾𝑗 (𝒙)𝑅

𝑡
𝑗𝝉 𝑗 = 0, (10)

where 𝝉 𝑗 is the imposed traction of the deformed cage face 𝑗 , leading

to the following closed-form update rule:

�̃� = 𝑇 (𝒙)-1
[∑︁

𝑖
𝑅𝑖𝑇𝑖 (𝒙)𝑅

𝑡
𝑖 �̃�𝑖 +

∑︁
𝑗
𝑅 𝑗𝐾𝑗 (𝒙)𝑅

𝑡
𝑗𝝉 𝑗

]
, (11)

with 𝑇 (𝒙)=
∑
𝑖 𝑅𝑖𝑇𝑖 (𝒙)𝑅

𝑡
𝑖 .

Furthermore, we can expand the corotated traction 𝝉 𝑗 in terms of

the matrices 𝑅 𝑗 and 𝑆 𝑗 from each cage face 𝑗 (see, e.g., [Sifakis and

Barbic 2012]), yielding the expression:

𝝉 𝑗 = 2𝜇𝑅 𝑗

[
𝑆 𝑗 +

( 𝜈

1 − 2𝜈

)
tr(𝑆 𝑗 )𝑰

]
𝒏 𝑗 . (12)

The strain 𝑆 𝑗 associated with cage face 𝑗 is meant to encode a stretch

along the undeformed unit normal 𝒏 𝑗 as well as in-plane stretches

along the undeformed face. Since tangential stretches contribute to

the corotated traction only via the trace of 𝑆 𝑗 in Eq. (12), we can

represent 𝑆 𝑗 without loss of generality as

𝑆 𝑗 = 𝜂 𝑗𝒏 𝑗𝒏
𝑡
𝑗 + 𝜆 𝑗 (𝑰 − 𝒏 𝑗𝒏

𝑡
𝑗 ), (13)

where 𝜂 𝑗 is the stretch along the rest normal and 𝜆 𝑗 is the average

in-plane stretch. With this expression for 𝑆 𝑗 , Eq. (12) simplifies to

𝝉 𝑗 = 2𝜇
[
𝜂 𝑗 +

𝜈

1 − 2𝜈

(
𝜂 𝑗 + (𝑑 − 1)𝜆 𝑗

) ]

︸                                      ︷︷                                      ︸
𝑠 𝑗

𝑅 𝑗𝒏 𝑗 = 𝑠 𝑗𝑅 𝑗𝒏 𝑗 , (14)

where we factored out all the elastic material coefficients and strain

stretches into a single scalar 𝑠 𝑗 for legibility. Observe that the trac-

tion vector is, up to a scaling factor, the rotated rest normal, which

may be different than the normal of the posed cage depending on

our choice of rotation 𝑅 𝑗 . This difference will allow a greater space

of possible deformations as we will see in ğ4.4. Also notice that,
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because of our assumption on the cage rotations and strains in the

case of a similarity transformation between rest and posed cages,

the expression of our elasticity-derived deformer in Eq. (11) guaran-

tees similarity invariance, an important property to have in order

to ensure an intuitive behavior of the resulting deformation.

4.4 Setting Rotations and Stretches

Now that we have derived our cage deformation, we describe next

how to compute, for every cage face 𝑗 , a rotation 𝑅 𝑗 as well as tan-

gential and normal stretches (𝜆 𝑗 , 𝜂 𝑗 ) that define a strain matrix 𝑆 𝑗 in

order to complete the construction of our cage deformer. The choice

of these degrees of freedom is crucial to the look and feel of the re-

sulting cage deformer. While one could explore various deformation

effects by tweaking these values, we only discuss two representative

variants (one local, one global) which offer complementary benefits.

Global variant. Arguably the simplest choice for face rotations is

through a registration process [Umeyama 1991] that returns the

optimal similarity transformation mapping the rest cage to the

posed cage in the least-squares sense. From the resulting global

rotation 𝑅 and global scaling 𝑠 , we then set every cage face 𝑗 with

rotation 𝑅 𝑗 = 𝑅 and tangential stretch 𝜆 𝑗 = 𝑠 . This approach is

inspired by the type of surface tractions that BEM (e.g., [James

and Pai 1999]) generates from displacements, which do not exhibit

significant change in both orientation and magnitude under small to

moderate deformations. Our use of a global registration can thus be

seen as a rough approximation of the BEM deformation, but without

any expensive linear solve.

Local variant. In contrast to the global approach, we can create more

localized deformation by setting 𝑅 𝑗 as the rotation between the rest

and deformed cage face 𝑗 . Similarly, a per-face tangential stretch

can be derived in 3D by computing the two singular values of the

linear map between the rest and posed cage face 𝑗 and setting 𝜆 𝑗
to their average Ð in 2D, we simply assign 𝜆 𝑗 to the length ratio

between the rest and posed edge 𝑗 .

Normal stretch. Once either the local or the global variant has been

selected, we still need to choose the stretch 𝜂 𝑗 along the normal

direction of each cage face 𝑗 . However, there is technically no in-

formation on how to set this value based simply on the shapes of

the rest and posed cage unless we include application-specific re-

quirements. For instance, Lipman et al. [2008] advocated for 𝜂 𝑗 =𝜆 𝑗
so as to ensure (quasi-)conformal deformations. Since our goal is

to resemble elastic deformations, we consider the normal stretch

as a łknobž to offer bulging control for the cage deformer. More

concretely, we draw inspiration from the observation that a swelling

deformation of a surface patch broadens the range of its normal

field, while a contraction narrows it. Therefore, we estimate the

local bulging amount 𝛽 𝑗 of a cage face 𝑗 by measuring the difference

between two solid angles: the one spanned by the incident vertex

normals on the deformed cage face and the one computed on the rest

face, with vertex normals evaluated by averaging the area-weighted

normals of the incident faces. We then set the normal stretch as

𝜂 𝑗 =𝜆 𝑗 exp(𝛾𝛽 𝑗/(2
𝑑−1𝜋)), where 𝛾 is a global user parameter that

controls the bulging scale while the denominator normalizes the

solid angle difference. Note that this normal stretch maintains the

input local in-between global

Fig. 4. Global vs. local variant. On a 2D Star mesh (top, with 𝜈 =0.38)

and a 3D FireHydrant mesh (bottom, with 𝜈 =0.3), we compare the global

vs. local choice of boundary conditions (rotations and stretches) when no

bulging is requested (𝛾 =0). One can easily create in-between deformation

by simply averaging the boundary conditions.

similarity invariance property by construction since one gets 𝛽 𝑗 =0

and thus 𝜂 𝑗 =𝜆 𝑗 if rest and posed cages are the same up to a similar-

ity transformation. Fig. 5 compares the resulting bulging effects for

a range of values of 𝛾 in 2D and 3D.

Finally, we found useful to add a post-optimization of the traction

scaling values 𝑠 𝑗 from Eq. (14) to avoid a possible łfloatingž effect of

with without

𝛾 =32

the deformation in case of large cage displace-

ments or large bulging scales (see inset). Since

linear elasticity expects a zero sum of internal

forces, we alter boundary tractions by finding

new traction scaling values 𝑠 ′𝑗 so that the sum

of each corotated cage traction 𝝉 𝑗 weighted

by its respective cage face area 𝐴 𝑗 (or length

in 2D) is zero. This correction, which again does not affect similar-

ity invariance, is found via the following constrained least-square

minimization:

min
{𝑠′

𝑗
}

∑︁
𝑗
𝐴 𝑗

(
𝑠 ′𝑗 − 𝑠 𝑗

)2
s.t.

∑︁
𝑗
𝐴 𝑗𝑠

′
𝑗𝑅 𝑗𝒏 𝑗 = 0, (15)

which is efficiently performed through the Schur complement by

solving a small 𝑑×𝑑 linear system.

4.5 Discussion

Our cage deformer has a number of unusual properties that deserve

mentioning. First, it uses vertex and normal coordinates to generate

non-interpolatory deformation, a property shared in 3D only with

input 𝛾 =0 𝛾 =2 𝛾 =4

input 𝛾 =0 𝛾 =10 𝛾 =20

Fig. 5. Bulging control. By varying 𝛾 , one changes the amount of bulging

created by our cage deformer (here, using the global variant and 𝜈 =0).
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Green coordinates thus far [Lipman et al. 2008]. Second, our coordi-

nates are derived from an integral of the fundamental solution of

elasticity over a bounded domain, unlike the Kelvinlets of de Goes

and James [2017] which disregard all boundary terms. Third, the

actual deformation induced by our cage deformer involves matrix-

valued coefficients, thus leading to greater expressiveness. Finally,

our contribution offers interactive volume and bulging control by

simply adjusting the normal stretch, which is a unique feature.

It also bears discussing our two variants for setting rotation and

stretches, since they have their own benefits and flaws. In our exper-

iments (see for instance Figs. 4 and 10), the local approach appeared

more łlivelyž creating results reminiscent of squash and stretch

deformations due to its purely local nature. However, it may cause

fold-overs in the cage interior more often, and its deformation is also

more sensitive to the triangulation of the cage mesh. Conversely, the

global approach partially dampens the deformation, thus offering

more robust and physically-plausible results under large cage dis-

placements. Although our two variants already offer a richer gamut

of deformation and control compared to previous work, other al-

ternatives could be easily devised; e.g., Fig. 4 shows how simply

linearly blending rotations and stretches provides a middle ground

between our two variants. Even bulging control could be handled

via different estimates based on specific applications, e.g., we could

measure the łswept volumež formed by a cage face between its

rest and posed positions. Finally, we point out that our formulation

offers volume control of the cage deformer in two complementary

ways: the Poisson ratio 𝜈 affects both the precomputation of the

matrix-valued coordinates in Eqs. (8) and the corotated traction in

Eq. (12) to imbue the deformer with global compressibility, while the

bulging parameter 𝛾 is used only at runtime in the normal stretch

𝜂 𝑗 to control local shape swelling.

5 RESULTS

In this section, we provide further details about our implementation,

show shape editing examples generated by our cage deformer, and

discuss these results compared to existing cage deformers. Our

source code is available at https://gitlab.inria.fr/geomerix/

public/somi-cage.

Implementation. Given a query point 𝒙 inside the rest cage Ω, we

evaluate its associated Somigliana coordinates by expressing Eqs. (8)

as a sum of integrals over cage triangles. Although simple closed-

form formulas are available in 2D, it becomes far more difficult in

3D. We thus turn to quadrature rules to evaluate these integrals on

each triangle, as detailed in Sec. A of the supplemental material.

In our implementation, we simply subdivide each

triangle into three quads and apply standard Gauss-

Legendre quadratures on each of them (see inset). By

default, we take 128 quadratures for each edge in 2D

and 7500 for each triangle in 3D. In Fig. 6, we plot the partition

of unity residual caused by approximating 𝑇𝑖 (𝒙), confirming its

rapid improvement as we increase quadrature count; we found in

our tests that a residual below 10−2 results in visually artifact-free

deformations. We implemented our 3D version using CUDA on a

Geforce RTX 3060 GPU to benefit from massive parallelism. While

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

1

2

# quadrature per face

10−5
10−4
10−3
10−2
10−1

#cage faces=184
#query points=39028

time (s)max𝒙∈Ω ∥
∑
𝑖 𝑇𝑖 (𝒙)−𝑰 ∥𝐹

Fig. 6. Quadrature evaluation. On the FireHydrant mesh, for instance,

the time complexity of computing Somigliana coordinates based on the rest

cage is roughly linear in the number of quadrature points per cage face.

Failure to satisfy partition of unity measures the numerical accuracy of

our quadrature evaluation, which decreases quickly with the number of

quadrature points, with no noticeable artifacts for errors below 10−2.

input GC Ours

Fig. 7. Infinite Poisson ratio. For 𝜈 = ±∞ and 𝛾 = 0, our cage deformer

(right) exactly matches Green coordinates (middle) for a 2D cage deforma-

tion of a dragon (top), but a 3D deformation of the Ogre mesh exhibits

different results. Note that ourmethod produces reduced quasi-conformality

in this example, with a right hand better matching the cage.

our use of a non-adaptive scheme is less efficient than more ad-

vanced quadratures, our precomputation timings are around 1.5𝑠

for the 39𝑘 FireHydrant mesh of Fig. 6, which is comparable to re-

cent quadrature-based deformers such as [Thiery et al. 2018]. Once

the Somigliana coordinates are built, generating our cage deforma-

tion is real-time, taking only 24𝑚𝑠 for the same FireHydrantmesh

for instance.

Bulging and volume control. The ease with which a model will expe-

rience volume change during a cage deformation is controlled by the

Poisson ratio 𝜈 . Figs. 1 and 2 show how changing the Poisson ratio

value affects deformation. Note that we prevent a recomputation

of both 𝑇𝑖 (𝒙) and 𝐾𝑗 (𝒙) each time the user changes 𝜈 by storing

the 𝒓𝒓𝑡 part of Eq. (3) and the two matrix parts of Eq. (4); we then

cheaply reassemble the matrix coordinates when 𝜈 changes. To con-

trol the propensity for the cage deformation to bulge out locally, one

can act instead on the bulging scale 𝛾 : Fig. 5 compares the intuitive

effect of this value on a 2D and a 3D cage example.

Comparisons. For the unphysical case of infinite Poisson ratio (𝜈 =

±∞), our 2D Somigliana coordinates match exactly the Green co-

ordinates of [Lipman et al. 2008] and the complex Cauchy-Green

coordinates of [Weber et al. 2009] when no bulging factor (𝛾 =0) is

6
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used Ð see Fig. 7 (top) for a visual confirmation and Sec. B of the

supplemental material for a proof; but this is no longer true in 3D

and our cage deformer behaves quite differently from all previous

works. In Fig. 11, we provide additional comparisons of 3D cage

deformations generated by Mean Value, Green, or Somigliana coor-

dinates. Notice that, for physically realistic Poisson ratios 0≤𝜈 < 1/2,

our results differ significantly from other coordinates by exhibit-

ing compensatory bulging with a magnitude dependent on 𝜈 Ð for

instance, seeWireSphere or Botijo models. Fig. 10 shows 2D ex-

amples instead, where again the elastic behavior of our coordinates

is clear in comparison to Mean Value or Green coordinates. For

completeness, we also compare our method with the real-time de-

former of James [2020] that tetrahedralizes the cage and computes

an embedded Phong deformation. Since this approach is only 𝐶0

continuous across tetrahedra, it suffers from non-smooth artifacts

which remain visible even if a finer cage is used, as seen in Fig. 8.

Ours [James 2020] [James 2020] Ours

Fig. 8. 𝑪∞ smoothness. While a Phong deformer [James 2020] can also

provide real-time deformation of a model with a coarse (left) or fine (right)

cage, its 𝐶0 continuity across internal tetrahedra induces severe visual

artifacts. Our cage deformer (here, using the local variant and 𝜈 =0) does

not require an internal 3D tesselation and guarantees a smooth embedding.

Limitations. At this point, it should be explicitly stated that our

Somigliana coordinates are not generating deformation satisfying

elastostatics from Eq. (1). While small to moderate displacements

of the cage vertices may capture deformations very much in line

with elastostatics simulation by its very foundations (see Fig. 9),

Somigliana coordinates are only derived from Eq. (1), very much like

Green coordinates were derived from the Laplace equation. They

are, in a sense, infused with the elasticity solutions, hence their use-

ful bulging and volume behavior during cage editing. Additionally,

our approach relies on quadrature evaluations as simple closed-form

input

input

BEM Ours BEM Ours

Fig. 9. BEM vs. Somigliana. Our global variant for setting boundary trac-

tions (here with 𝜈 =0, 𝛾 =2) mimics point-collocated BEM [Pozrikidis 2002]

well for small deformations without requiring dense equation solves, but it

does deviate from BEM solutions for larger deformations.

input

MVC GC Ours
(global)

Ours
(local)

Fig. 10. 2D comparisons. We compare Mean Value (MVC [Floater 2003]),

Green (GC [Lipman et al. 2008]), and global & local Somigliana coordinates

for a deformed hexagonal (top) and an L-shaped cage (bottom), for 𝛾 = 2,

and 𝜈 =0.1. The global variant shows a more muted deformation than the

local one, but both exhibit an expected elastic deformation.

expressions are currently not known in 3D, although this is hardly

a limitation in practice Ð in fact, our use of quadratures prevents

the few numerical singularities (e.g., division by zero) that the ana-

lytical formula from [Lipman et al. 2008] generates. When a large

bulging factor 𝛾 is used, our cage deformer may also exhibit a lack of

𝛾 =44

symmetry induced by its dependence on

the mesh connectivity of the cage (see in-

set), which is a common limitation for prior

work too as addressed in [Thiery et al. 2018;

Thiery and Boubekeur 2022]. One might

explore approaches that are less sensitive

to mesh connectivity, based for instance

on the aforementioned łswept volumež enclosed between rest and

deformed facets. Finally, our results may contain, like most existing

cage deformers, fold-overs Ð especially for the local variant with

large Poisson ratio.

6 CONCLUSION

In this paper, we introduced a novel cage deformer based on ver-

tex and normal matrix-valued coordinates. Due to their derivation

from an integral form of fundamental solutions to elastostatics, we

showed that the resulting cage deformations capture the typical

local bulging and volume changes expected from elasticity. As a re-

sult, our cage deformer significantly increases the space of plausible

deformations that an artist can control via cage editing.

For future work, we can tackle a variety of desirable improvements

or extensions. For instance, finding simple closed-form expressions

for our 3D Somigliana coordinates or an adaptive strategy for quadra-

tures based on near- or far-field evaluations are likely to improve

computational efficiency. One could also extend our approach to

quad or tri-quad meshes to offer more symmetric deformation in

the spirit of [Thiery et al. 2018; Thiery and Boubekeur 2022]. Finally,

vertex and normal coordinates, be they scalar or matrix-valued, re-

main vastly unexplored, so we hope that our work will spark further

exploration, based on other linear operators for instance.
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Fig. 11. 3D Comparisons. We compare Mean Value (MVC [Ju et al. 2005]), Green (GC [Lipman et al. 2008]), and Somigliana coordinates for a variety of 3D

cages using our global variant, for 𝛾 =1 and 𝜈 =0.3. Note how our cage deformer generates elastic-looking shapes that follow the cage trend (be it bending,

twisting, or creasing) quite closely even in the case of extreme deformation (e.g.,WireSphere, bottom right) or very coarse cage (e.g., SpikyBox, bottom left).
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A EVALUATING SOMIGLIANA COORDINATES
As explained in our main paper [Chen et al. 2023], Somigliana coor-
dinates for each face 𝑖 and node 𝑗 are defined as

𝑇𝑖 (𝒙) =
∫
𝜕Ω

T (𝒚, 𝒙)𝜙𝑖 (𝒚) d𝜎𝒚 ,

𝐾𝑗 (𝒙) =
∫
𝜕Ω

K(𝒚, 𝒙)𝜓 𝑗 (𝒚) d𝜎𝒚 .

(1a)

(1b)

Finding efficiently-computable closed-form expressions for these in-
tegrals is challenging. Instead, we apply quadratures to numerically
evaluate them in practice. Here, we provide details on integrating
these integrals for the 2D and 3D cases. Given a point 𝒙 ∈ Ω, we
compute both 𝑇𝑖 (𝒙) and 𝐾𝑗 (𝒙) by iterating over each element of
the domain boundary.

2D case. Given an edge 𝐿𝑝𝑞 = (𝒚𝑝 ,𝒚𝑞), a point 𝒚 on this edge can
be expressed as 𝒚 =𝒚𝑝 + 𝛼 (𝒚𝑞 − 𝒚𝑝 ) for a barycentric coordinate

𝒚𝑝 𝒚𝑞

𝒅 𝒓

𝒆

𝒙

𝒚

𝛼 ∈ [0, 1]. We define 𝒆=𝒚𝑞 −𝒚𝑝 , 𝒅=𝒚𝑝 −𝒙 , and
𝒓 =𝛼𝒆 + 𝒅 (see inset), while 𝑟 = ∥𝒓 ∥ denotes the
norm of 𝒓 . Since𝜓 𝑗 (𝒚) are piecewise constant
per edge, face coordinates are easily computed
through quadrature as:

𝐾𝐿𝑝𝑞(𝒙) =
∫
𝐿𝑝𝑞

K(𝒚, 𝒙) d𝜎𝒚 = ∥𝒆∥
∫ 1

0
K(𝒚(𝛼), 𝒙) d𝛼

= ∥𝒆∥
∫ 1

0
(𝑎 − 𝑏) ln

(
1

𝑟 (𝛼)

)
𝑰 + 𝑏

𝑟2 (𝛼)
𝒓 (𝛼)𝒓𝑡 (𝛼) d𝛼

≈ ∥𝒆∥
∑︁
𝑘

𝑤𝑘

(
(𝑎 − 𝑏) ln

(
1

𝑟 (𝛼𝑘 )

)
𝑰 + 𝑏

𝑟2 (𝛼𝑘 )
𝒓 (𝛼𝑘 )𝒓𝑡 (𝛼𝑘 )

)
,

where 𝑎=1/𝜇 (2𝑑−1𝜋) and 𝑏=𝑎/4(1−𝜈), while {(𝑤𝑘 , 𝛼𝑘 )}𝑘 denotes
the pairs of weights and (barycentric coordinates of) points of a
Gauss-Legendre quadrature over the interval [0, 1].

As for the vertex coordinates, integrating over the line segment 𝐿𝑝𝑞
contributes 𝑇𝐿𝑝𝑞

𝑝 (resp. 𝑇𝐿𝑝𝑞
𝑞 ) to 𝑇𝑝 (𝒙) (resp. 𝑇𝑞 (𝒙)) with:

Authors’ addresses: J. Chen, LIX, Ecole Polytechnique (IP Paris), 1 rue Honoré d’Estienne
d’Orves, 91120 Palaiseau, France; F. de Goes, Pixar Animation Studios, 1200 Park Ave,
Emeryville, CA 94608, USA; M. Desbrun, Inria Saclay/Ecole Polytechnique (IP Paris), 1
rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France.

𝑇
𝐿𝑝𝑞
𝑝 (𝒙) = ∥𝒆∥

∫ 1

0
T (𝒚(𝛼), 𝒙) (1 − 𝛼) d𝛼

= ∥𝒆∥
∫ 1

0

{
𝜇 (𝑎 − 2𝑏)
𝑟2 (𝛼)

[
(𝒏𝑡 𝒓 (𝛼))𝑰 + 𝒏𝒓𝑡 (𝛼) − 𝒓 (𝛼)𝒏𝑡

]
+ 4𝜇𝑏
𝑟4 (𝛼)

(𝒏𝑡 𝒓 (𝛼))𝒓 (𝛼)𝒓𝑡 (𝛼)
}
(1 − 𝛼)d𝛼.

Similarly, we have 𝑇𝐿𝑝𝑞
𝑞 (𝒙) = ∥𝒆∥

∫ 1
0 T (𝒚(𝛼), 𝒙)𝛼 d𝛼 , and both of

them are approximated using a Gauss-Legendre quadrature. We
then assemble each 𝑇𝑖 (𝒙) from its two neighboring edges 𝐿𝑝𝑖 and
𝐿𝑖𝑞 via:

𝑇𝑖 (𝒙) = 𝑇
𝐿𝑝𝑖
𝑖

(𝒙) +𝑇𝐿𝑖𝑞
𝑖

(𝒙).

3D case. The 3D case proceeds similarly: given a triangular cage
facet △𝑝𝑞𝑠 = (𝒚𝑝 ,𝒚𝑞,𝒚𝑠 ), a point inside this triangle can be expressed

𝒚𝑝 𝒚𝑞

𝒚𝑠
𝒅

𝒓

𝒗

𝒘

𝒙

𝒚

using barycentric coordinates as 𝒚 = 𝒚𝑝 +
𝛼 (𝒚𝑞 −𝒚𝑝 ) +𝛽 (𝒚𝑠 −𝒚𝑝 ), where 𝛼 ∈ [0, 1], and
𝛽 ∈ [0, 1−𝛼]. Denote 𝒗=𝒚𝑞 −𝒚𝑝 ,𝒘 =𝒚𝑠 −𝒚𝑝 ,
𝒅=𝒚𝑝 − 𝒙 (see inset), so that 𝒓 =𝒅 + 𝛼𝒗 + 𝛽𝒘 ,
with still 𝑟 = ∥𝒓 ∥. Then one has:

𝐾△𝑝𝑞𝑠
(𝒙) =

∫
△𝑝𝑞𝑠

K(𝒚, 𝒙)d𝜎𝒚

= 2|△𝑝𝑞𝑠 |
∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽 K(𝒚(𝛼, 𝛽), 𝒙)

= 2|△𝑝𝑞𝑠 |
∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽

𝑎 − 𝑏
𝑟 (𝛼, 𝛽) 𝑰 +

𝑏

𝑟3 (𝛼, 𝛽)
𝒓 (𝛼, 𝛽)𝒓𝑡 (𝛼, 𝛽)

≈ 2|△𝑝𝑞𝑠 |
∑︁
𝑘

𝑤𝑘

(
𝑎 − 𝑏

𝑟 (𝛼𝑘 , 𝛽𝑘 )
𝑰 + 𝑏

𝑟3 (𝛼𝑘 , 𝛽𝑘 )
𝒓 (𝛼𝑘 , 𝛽𝑘 )𝒓𝑡 (𝛼𝑘 , 𝛽𝑘 )

)
,

where |△𝑝𝑞𝑠 | is the area of △𝑝𝑞𝑠 , while {𝑤𝑘 }𝑘 are the quadrature
weights of their associated 2D quadrature points {(𝛼𝑘 , 𝛽𝑘 )}𝑘 on a
canonical triangle in R2 with nodes located at (0, 0), (0, 1) and (1, 0).
Taking into account both the cost and the generality of quadrature
calculations to support high-order precision, we choose to subdivide
each triangle into three quads to apply standard Gauss-Legendre
quadratures — please refer to Sec. 5 of our paper for an illustration.
Now, since the basis function 𝜙𝑖 (𝒚) is a hat function, 𝑇𝑖 (𝒙) is a sum
of components coming from all its neighboring triangle facets, i.e.,
𝑇𝑖 (𝒙) =

∑
△∈N𝑖

𝑇 △
𝑖
(𝒙). The contribution to 𝑇𝑖 (𝒙) of a neighboring

triangle △𝑖𝑝𝑞 , for instance, reads:
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HTTPS://ORCID.ORG/0000-0003-3424-6079
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𝑇
△𝑖𝑝𝑞

𝑖
=

∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽 T (𝒚(𝛼, 𝛽), 𝒙) (1 − 𝛼 − 𝛽)

= 2|△𝑖𝑝𝑞 |
∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽

{
𝜇 (𝑎 − 2𝑏)
𝑟3 (𝛼, 𝛽)

[
(𝒏𝑡 𝒓 (𝛼, 𝛽))𝑰 + 𝒏𝒓𝑡 (𝛼, 𝛽)

− 𝒓 (𝛼, 𝛽)𝒏𝑡
]
+ 6𝜇𝑏
𝑟5 (𝛼, 𝛽)

(𝒏𝑡 𝒓 (𝛼, 𝛽))𝒓 (𝛼, 𝛽)𝒓 (𝛼, 𝛽)𝑡
}
(1 − 𝛼 − 𝛽).

Similarly, we have
𝑇
△𝑝 𝑗𝑞

𝑗
=

∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽 T (𝒚(𝛼, 𝛽), 𝒙)𝛼,

𝑇
△𝑝𝑞𝑘

𝑘
=

∫ 1

0
d𝛼

∫ 1−𝛼

0
d𝛽 T (𝒚(𝛼, 𝛽), 𝒙)𝛽.

B CONDITIONAL EQUIVALENCE TO CAUCHY-GREEN
COORDINATES (2D GREEN COORDINATES)

In the special 2D casewhen𝜈 =±∞ and𝛾 =0, the traction terms given
by Eq. (14) from our paper is zero, so we only have the deformed
boundary 𝒚 with traction kernel T𝑖 (𝒚, 𝒙) that contributes to the
actual deformation �̃� . Since lim𝜈→±∞ 𝑏 = 0, traction kernel becomes
T (𝒓) = 1

2𝜋𝑟 2 [(𝒏
𝑡 𝒓)𝑰 + 𝒏𝒓𝑡 − 𝒓𝒏𝑡 ]. As a result, the deformation

computed by summing over all edges reduces to

�̃� (𝒙) = 1
2𝜋

∑︁
𝑒

∫ 𝐿𝑒

0

(
𝒓𝑡𝒏

𝑟2
𝑰 + 1

𝑟2
(𝒏𝒓𝑡 − 𝒓𝒏𝑡 )

)
𝒚 d𝜎𝒚

=
1
2𝜋

∑︁
𝑒

∫ 𝐿𝑒

0

1
𝑟2

{ (
𝑟1𝑛1+𝑟2𝑛2 0

0 𝑟1𝑛1+𝑟2𝑛2

)
+
(

0 𝑟2𝑛1−𝑟1𝑛2
𝑟1𝑛2−𝑟2𝑛1 0

) }
𝒚 d𝜎𝒚 .

(2)

For each edge, we can rewrite the above integral using complex
numbers denoted with hollow letters, yielding

1
2𝜋

∫ 𝐿𝑒

0

𝑟1𝑛1 + 𝑟2𝑛2 + i(𝑟1𝑛2 − 𝑟2𝑛1)
𝑟∗𝑟

�̃� d𝜎𝑦

=
1
2𝜋

∫ 𝐿𝑒

0

(𝑟1 − i𝑟2) (𝑛1 + i𝑛2)
𝑟∗𝑟

�̃� d𝜎𝑦

=
1
2𝜋

∫ 𝐿𝑒

0

𝑟∗𝑛
𝑟∗𝑟

�̃� d𝜎𝑦 =
1
2𝜋 i

∫ 𝐿𝑒

0

�̃�

𝑟
i·𝑛 d𝜎𝑦

=
1
2𝜋 i

∫
𝐿

�̃�

𝑟
d𝑦,

(3)

where 𝑟∗ denotes the conjugate of 𝑟 . This proves that when 𝜈 =±∞
and 𝛾 =0, our 2D coordinates exactly reproduce the Cauchy-Green
coordinates [Weber et al. 2009] derived from Cauchy’s integral.
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