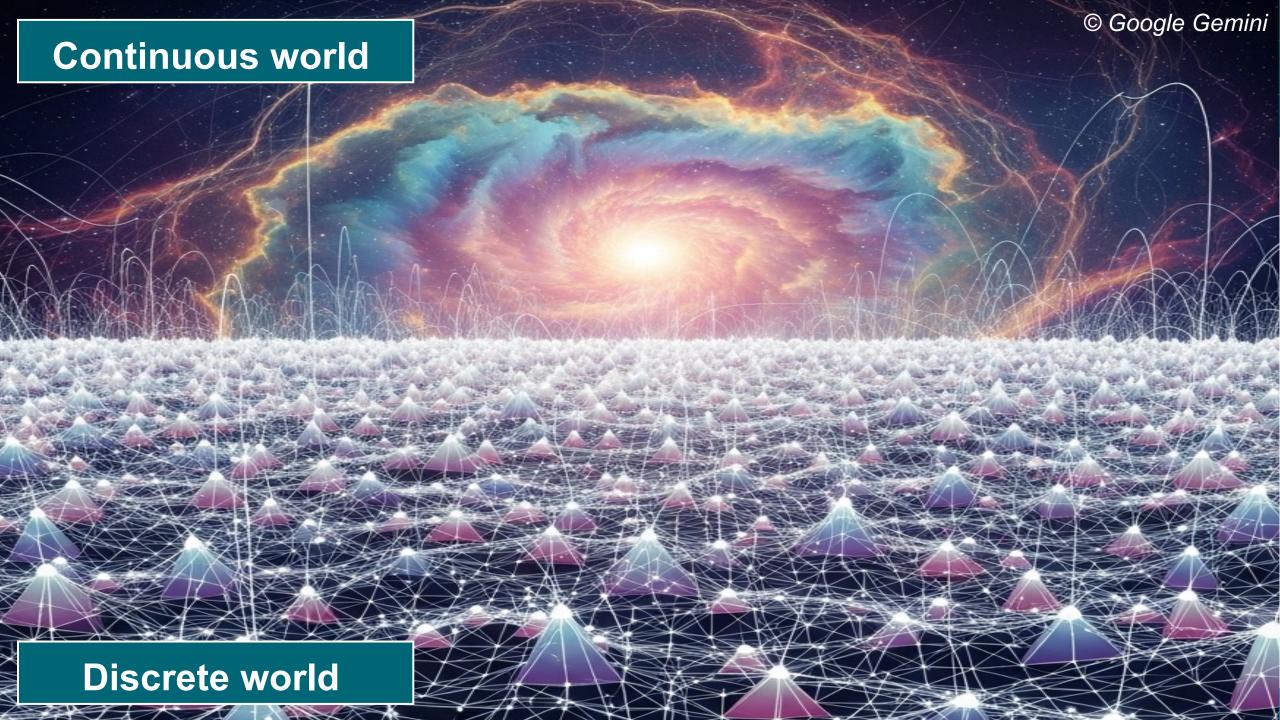


UNFOLDING THE POWER OF GREEN'S FUNCTIONS FOR MODELING AND SIMULATION

JIONG CHEN INRIA 08/10/2025

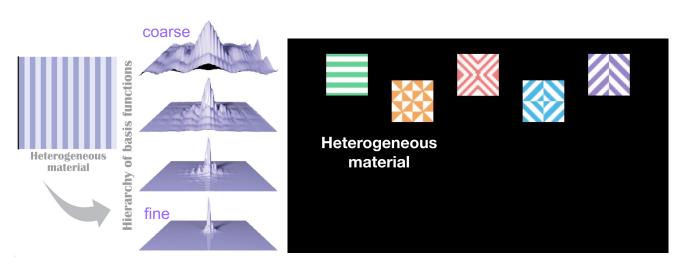


PAST WORK ON DISCRETIZATION

Eternal goals: high accuracy with low cost

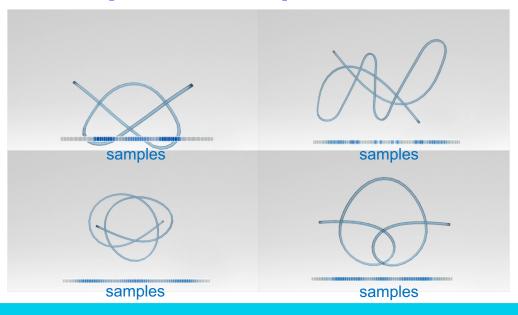
FUNCTIONAL APPROXIMATION PERSPECTIVE

 Construct hierarchical matrix-valued basis functions & wavelets adapting to heterogeneous elasticity [Chen et al. 2018, 2019]



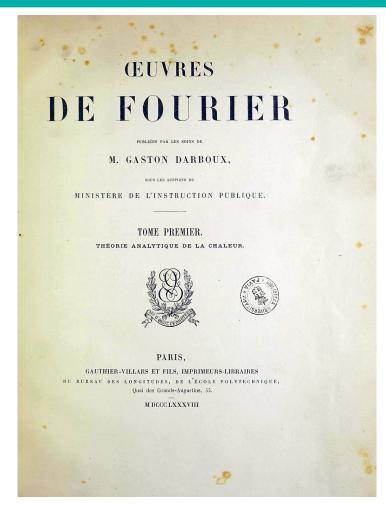
SIGNAL SAMPLING PERSPECTIVE

 Optimize the spatial distribution of discrete samples by placing them where they are most needed [Wen et al. 2020]



FROM NUMERICAL TO (SEMI-) ANALYTICAL APPROACHES

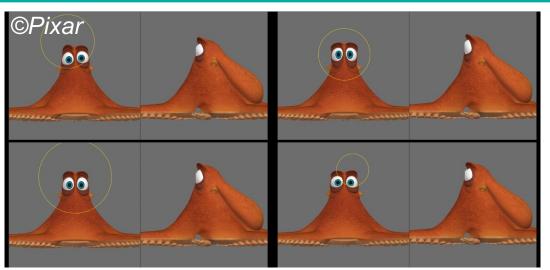
- Numerical approaches, e.g., FEM and FDM, are general-purpose methods...
- ...but they may not fully exploit the properties of the differential operators for extreme efficiency
- The search for analytical solutions to PDEs has a much longer history than that for numerical ones
 - Led to creation of many powerful theories and tools
 - Fourier analysis, special functions, inverse scattering transform...



J. Fourier, The Analytical Theory of Heat, 1888

FROM NUMERICAL TO (SEMI-) ANALYTICAL APPROACHES

- Numerical approaches, e.g., FEM and FDM, are general-purpose methods...
- ...but they may not fully exploit the properties of the differential operators for extreme efficiency
- The search for analytical solutions to PDEs has a much longer history than that for numerical ones
 - Led to creation of many powerful theories and tools
 - Fourier analysis, special functions, inverse scattering transform...
- What can we do with analytical solutions in modeling and simulation?



METHOD OF GREEN'S FUNCTIONS

Green's function – analytical solution to homogenous & "boundless" PDEs w.r.t. a singular impulse

Given a linear and homogeneous PDE

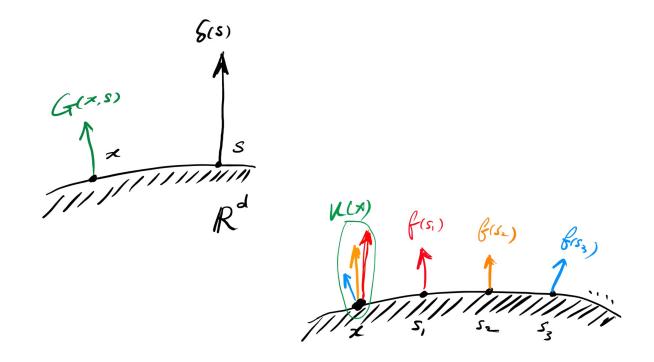
$$\mathcal{L}u(x) = f(x)$$

• A Green's function G(x,s) is defined as

$$\mathcal{L}G(x,s) = \delta(x-s)$$

Solution expressed via convolution

$$u(x) = \int G(x, s) f(s) ds$$

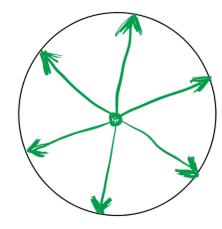


No equation solves, cheap to evaluate!

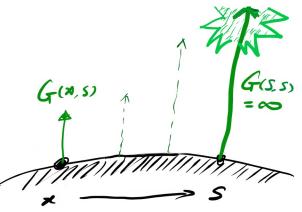
METHOD OF GREEN'S FUNCTIONS

Differential operator L	Green's function G	Example of application
∂_t^{n+1}	$\frac{t^n}{n!}\Theta(t)$	
$\partial_t + \gamma$	$\Theta(t)e^{-\gamma t}$	
$(\partial_t + \gamma)^2$	$\Theta(t)te^{-\gamma t}$	
$\partial_t^2 + 2\gamma \partial_t + \omega_0^2$ where $\gamma < \omega_0$	$\Theta(t)e^{-\gamma t} \; rac{\sin(\omega t)}{\omega} \;\; ext{with} \;\; \omega = \sqrt{\omega_0^2 - \gamma^2}$	1D underdamped harmonic oscillator
$\partial_t^2 + 2\gamma \partial_t + \omega_0^2$ where $\gamma > \omega_0$	$\Theta(t)e^{-\gamma t} \; rac{\sinh(\omega t)}{\omega} \;\; ext{with} \;\; \omega = \sqrt{\gamma^2 - \omega_0^2}$	1D overdamped harmonic oscillator
$\partial_t^2 + 2\gamma \partial_t + \omega_0^2$ where $\gamma = \omega_0$	$\Theta(t)e^{-\gamma t}t$	1D critically damped harmonic oscillator
2D Laplace operator $ abla^2_{ ext{2D}} = \partial_x^2 + \partial_y^2$	$rac{1}{2\pi} \ln ho$ with $ ho = \sqrt{x^2 + y^2}$	2D Poisson equation
3D Laplace operator $ abla^2_{ m 3D} = \partial_x^2 + \partial_y^2 + \partial_z^2$	$rac{-1}{4\pi r}$ with $r=\sqrt{x^2+y^2+z^2}$	Poisson equation
Helmholtz operator $ abla^2_{ m 3D} + k^2$	$rac{-e^{-ikr}}{4\pi r}=i\sqrt{rac{k}{32\pi r}}H_{1/2}^{(2)}(kr)=irac{k}{4\pi}h_0^{(2)}(kr)$	stationary 3D Schrödinger equation for free particle
$ abla^2 - k^2$ in n dimensions	$-(2\pi)^{-n/2} \left(rac{k}{r} ight)^{n/2-1} K_{n/2-1}(kr)$	Yukawa potential, Feynman propagator
$\partial_t^2 - c^2 \partial_x^2$	$\frac{1}{2c}\Theta(t- x/c)$	1D wave equation
$\partial_t^2 - c^2 abla_{2\mathrm{D}}^2$	$rac{1}{2\pi c\sqrt{c^2t^2- ho^2}}\Theta(t- ho/c)$	2D wave equation
D'Alembert operator $\square = rac{1}{c^2} \partial_t^2 - abla_{3\mathrm{D}}^2$	$\frac{\delta(t-rac{r}{c})}{4\pi r}$	3D wave equation
$\partial_t - k \partial_x^2$	$\Theta(t) igg(rac{1}{4\pi kt}igg)^{1/2} e^{-x^2/4kt}$	1D diffusion
$\partial_t - k abla_{ m 2D}^2$	$\Theta(t) \left(rac{1}{4\pi kt} ight) e^{- ho^2/4kt}$	2D diffusion
$\partial_t - k abla_{ m 3D}^2$	$\Theta(t) igg(rac{1}{4\pi kt}igg)^{3/2} e^{-r^2/4kt}$	3D diffusion
$rac{1}{c^2}\partial_t^2 - \partial_x^2 + \mu^2$	$\frac{1}{2}\left[\left(1-\sin\mu ct\right)\left(\delta(ct-x)+\delta(ct+x)\right)+\mu\Theta(ct- x)J_0(\mu u)\right] \text{with} u=\sqrt{c^2t^2-x^2}$	1D Klein-Gordon equation
$rac{1}{c^2}\partial_t^2 - abla_{2\mathrm{D}}^2 + \mu^2$	$\frac{1}{4\pi} \left[(1 + \cos(\mu ct)) \frac{\delta(ct - \rho)}{\rho} + \mu^2 \Theta(ct - \rho) \operatorname{sinc}(\mu u) \right] \text{with} u = \sqrt{c^2 t^2 - \rho^2}$	2D Klein–Gordon equation
$\Box + \mu^2$	$rac{1}{4\pi}\left[rac{\delta\left(t-rac{r}{c} ight)}{r}+\mu c\Theta(ct-r)rac{J_{1}\left(\mu u ight)}{u} ight] \;\; ext{with} \;\; u=\sqrt{c^{2}t^{2}-r^{2}}$	3D Klein–Gordon equation
$\partial_t^2 + 2\gamma\partial_t - c^2\partial_x^2$	$\frac{1}{2}e^{-\gamma t}\left[\delta(ct-x)+\delta(ct+x)+\Theta(ct- x)\left(\frac{\gamma}{c}I_0\left(\frac{\gamma u}{c}\right)+\frac{\gamma t}{u}I_1\left(\frac{\gamma u}{c}\right)\right)\right] \text{with} u=\sqrt{c^2t^2-x^2}$	telegrapher's equation
$\partial_t^2 + 2\gamma \partial_t - c^2 abla_{2\mathrm{D}}^2$	$\boxed{\frac{e^{-\gamma t}}{4\pi}\left[(1+e^{-\gamma t}+3\gamma t)\frac{\delta(ct-\rho)}{\rho}+\Theta(ct-\rho)\left(\frac{\gamma\sinh\left(\frac{\gamma u}{c}\right)}{cu}+\frac{3\gamma t\cosh\left(\frac{\gamma u}{c}\right)}{u^2}-\frac{3ct\sinh\left(\frac{\gamma u}{c}\right)}{u^3}\right)\right] \text{ with } u=\sqrt{c^2t^2-\rho^2}}$	2D relativistic heat conduction
$\partial_t^2 + 2\gamma \partial_t - c^2 abla_{3\mathrm{D}}^2$	$\boxed{\frac{e^{-\gamma t}}{20\pi}\left[\left(8-3e^{-\gamma t}+2\gamma t+4\gamma^2 t^2\right)\frac{\delta(ct-r)}{r^2}+\frac{\gamma^2}{c}\Theta(ct-r)\left(\frac{1}{cu}I_1\left(\frac{\gamma u}{c}\right)+\frac{4t}{u^2}I_2\left(\frac{\gamma u}{c}\right)\right)\right]} \text{with} u=\sqrt{c^2t^2-r^2}$	3D relativistic heat conduction

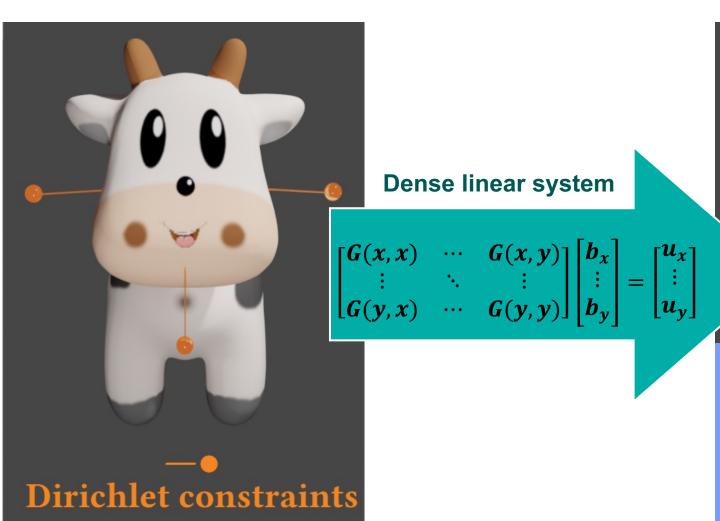
Incapable of representing anisotropy

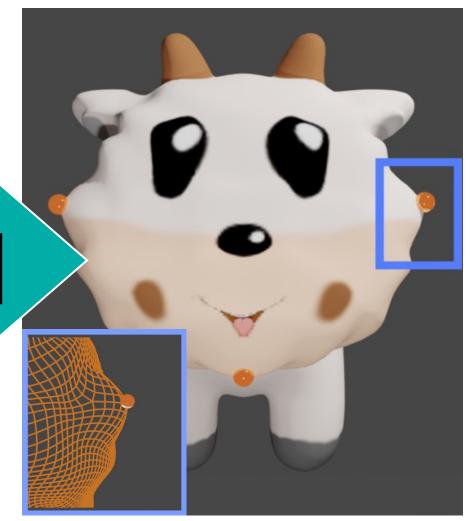


Singular at the origin

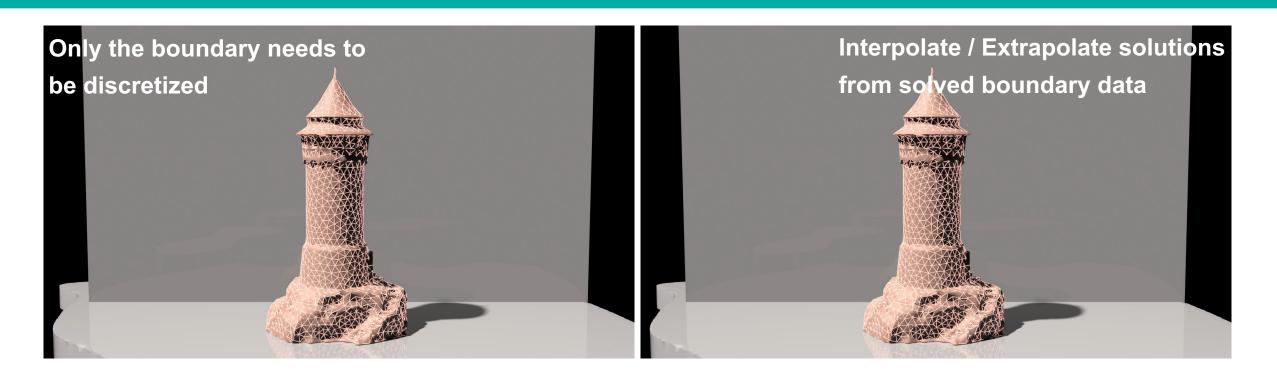


ENFORCING BOUNDARY CONDITIONS

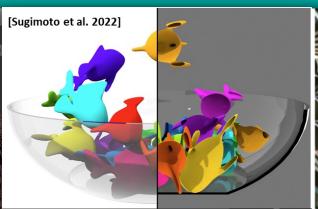




BOUNDARY ELEMENT METHOD



BOUNDARY ELEMENT METHOD



Extrapolate solutions boundary data

THE TWO CHALLENGES

Solve modeling/simulation problems using the method of Green's functions

$$u(x) = \int G(y, x)g(y)dS_y$$

GENERALIZABILITY to a wider range of linear operators and impulses

s.t.
$$\mathcal{D}(u)|_{\partial\Omega} = u_0$$

SCALABILITY of enforcing boundary conditions for large-scale problems

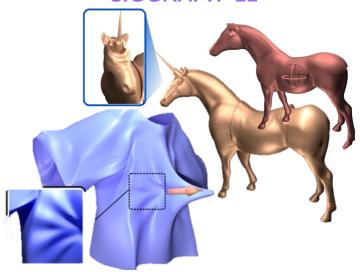
9

APPROACHING THE CHALLENGES

Applications

Free-space shape editing

SIGGRAPH '22



Mathematical tool

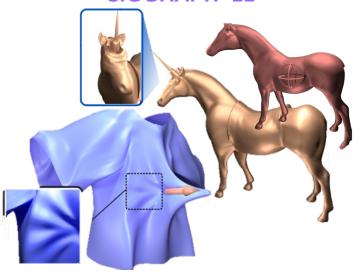
- Fourier analysis and series expansion for generalized, regularized Green's functions
- Tradeoff
 - No equations solves, real-time performance
 - Not aware of any boundaries

APPROACHING THE CHALLENGES

Applications

Free-space shape editing

SIGGRAPH '22



Mathematical tool

 Fourier analysis and series expansion for generalized, regularized Green's functions

Tradeoff

- No equations solves, real-time performance
- Not aware of any boundaries

Scalable solvers for BIEs

SIGGRAPH '24 '25

Mathematical tool

Inverse matrix factorization for preconditioning Krylov subspace iterations

Tradeoff

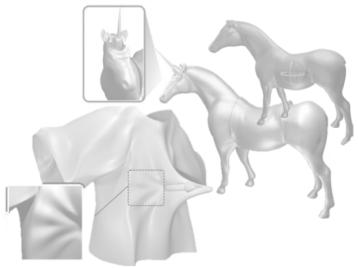
- Not real-time due to solving dense systems
- Boundary conditions are strictly satisfied in a scalable manner

APPROACHING THE CHALLENGES

Applications

Free-space shape editing

SIGGRAPH '22



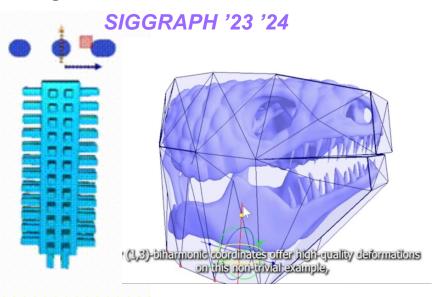
Mathematical tool

 Fourier analysis and series expansion for generalized, regularized Green's functions

Tradeoff

- No equations solves, real-time performance
- Not aware of any boundaries

Cage controlled deformation tools



Mathematical tool

- Generalized barycentric coordinates w.r.t. the controlling cage

Tradeoff

- Some precomputation, no equations solves, real-time performance
- Aware of boundary conditions, but only approximately fulfill them

Scalable solvers for BIEs SIGGRAPH '24 '25

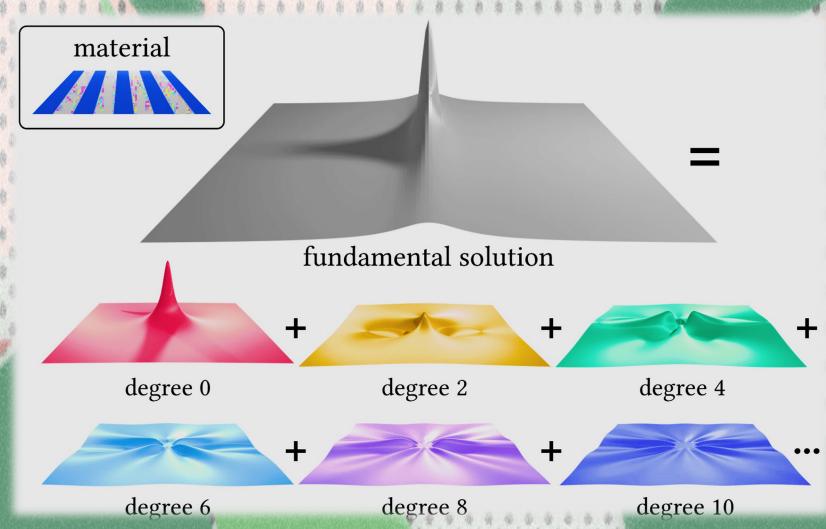
Mathematical tool

Inverse matrix factorization for preconditioning Krylov subspace iterations

Tradeoff

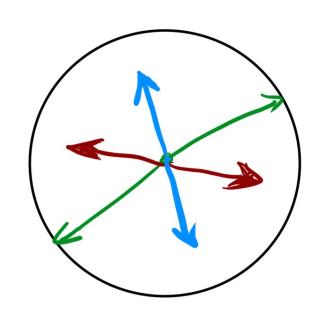
- Not real-time due to solving dense systems
- Boundary conditions are strictly satisfied in a scalable manner

GENERALIZED GREEN'S FUNCTIONS

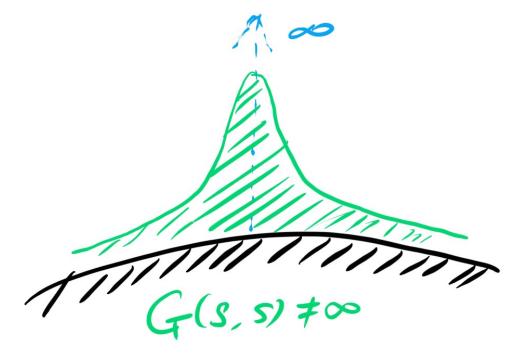


OUR MOTIVATION

Extend Green's function to support...

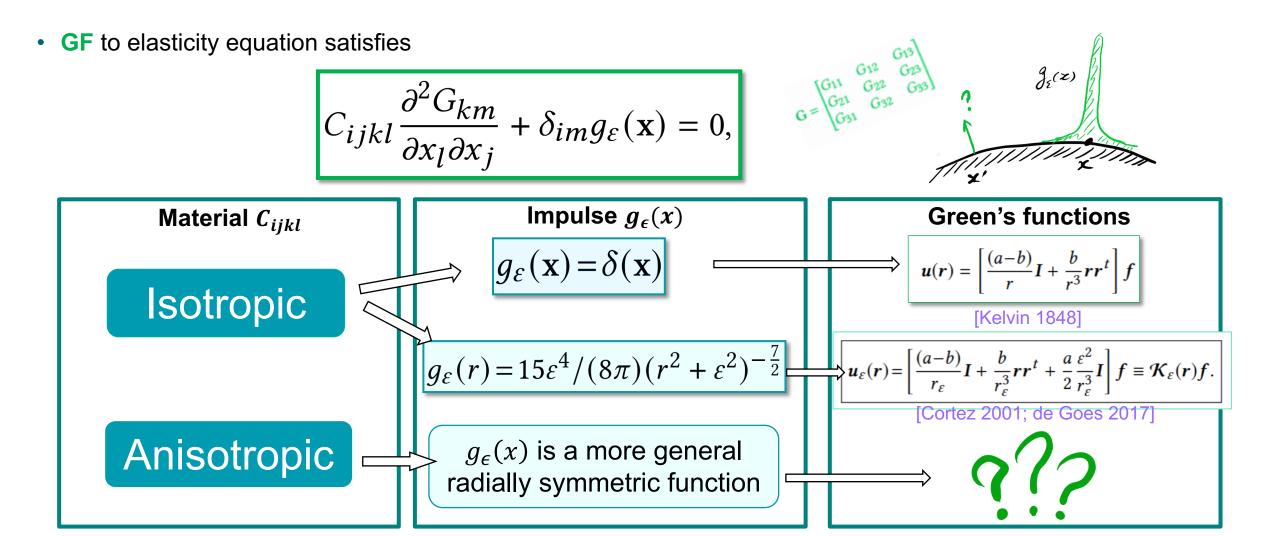


Anisotropy



Arbitrary regularization

GENERALIZED GREEN'S FUNCTION OF ELASTICITY



DERIVING GF THROUGH FOURIER TRANSFORM

Plane wave

• For arbitrary material and impulses, G(x) has no analytical expressions in general

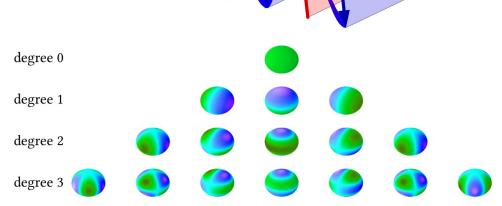
Inverse Fourier transform

$$\widehat{G}_{km}(\boldsymbol{\xi}) = (C_{ijkl}\xi_l\xi_j)^{-1}\delta_{im}\widehat{g}_{\varepsilon}(\boldsymbol{\xi}).$$

$$\mathbf{G}(\mathbf{x}) = \frac{1}{8\pi^3} \int_{\mathbb{R}^3} \widehat{\mathbf{G}}(\widehat{\boldsymbol{\xi}}) \exp(\mathbf{i} \mathbf{x} \cdot \boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi},$$

Plane-wave expansion, or Rayleigh expansion

$$\exp(\mathbf{i}\mathbf{x}\cdot\boldsymbol{\xi}) = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \mathbf{i}^{l} j_{l}(|\mathbf{x}||\boldsymbol{\xi}|) Y_{l}^{m}(\widetilde{\mathbf{x}}) \overline{Y}_{l}^{m}(\widetilde{\boldsymbol{\xi}}),$$



Spherical harmonics

DERIVING GF THROUGH FOURIER TRANSFORM

Plane wave

• For arbitrary material and impulses, G(x) has no analytical expressions in general

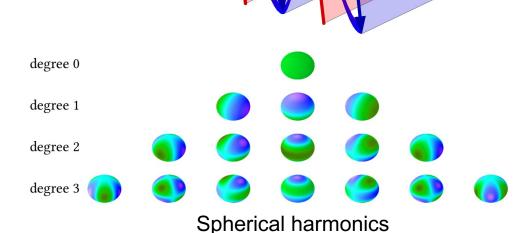
Inverse Fourier transform

$$\widehat{G}_{km}(\boldsymbol{\xi}) = (C_{ijkl}\xi_l\xi_j)^{-1}\delta_{im}\widehat{g}_{\varepsilon}(\boldsymbol{\xi}).$$

$$\mathbf{G}(\mathbf{x}) = \frac{1}{8\pi^3} \int_{\mathbb{R}^3} \widehat{\mathbf{G}}(\boldsymbol{\xi}) \exp(\mathbf{i} \mathbf{x} \cdot \boldsymbol{\xi}) \, \mathrm{d}\boldsymbol{\xi},$$

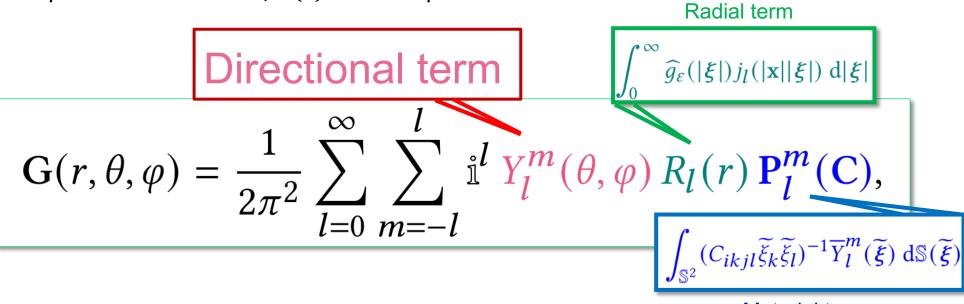
Plane-wave expansion, or Rayleigh expansion

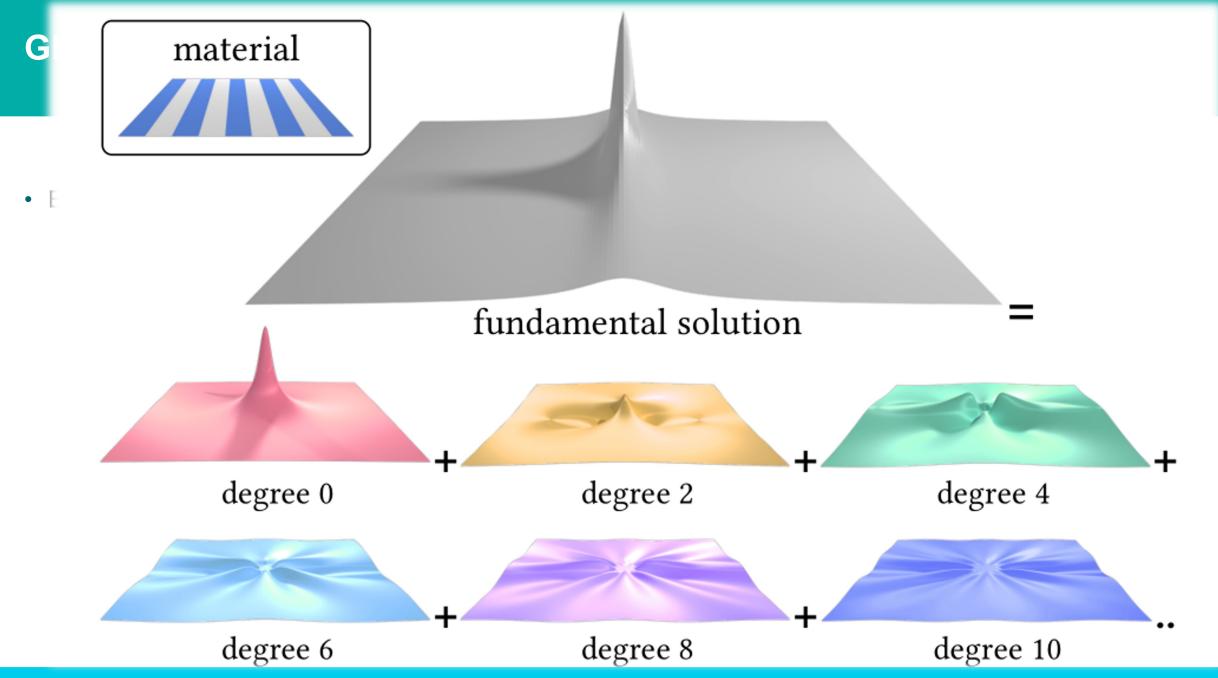
$$\mathbf{G}(\mathbf{x}) = \frac{1}{2\pi^2} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} i^l Y_l^m(\widetilde{\mathbf{x}}) \int_0^{\infty} \widehat{g}_{\varepsilon}(|\xi|) j_l(|\mathbf{x}||\xi|) \, \mathrm{d}|\xi| \cdot \int_{\mathbb{S}^2} (C_{ikjl} \widetilde{\xi}_k \widetilde{\xi}_l)^{-1} \overline{Y}_l^m(\widetilde{\xi}) \, \mathrm{d}\mathbb{S}(\widetilde{\xi}),$$



GREEN'S FUNCTION IN SERIES

• Expressed in spherical coordinates, G(x) is decomposed as





EXTENSION TO GRADIENT

Fourier transform of partial derivative

$$\widehat{G_{ij,p}} = i \xi_p \widehat{G}_{ij}, p = 0, 1, 2,$$

 $\mathcal{R}_l(|\mathbf{x}|) = \int_0^\infty \widehat{g}_{\varepsilon}(|\boldsymbol{\xi}|) j_l(|\mathbf{x}||\boldsymbol{\xi}|) |\boldsymbol{\xi}| \, \mathrm{d}|\boldsymbol{\xi}|,$

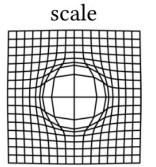
SH expansion of gradient

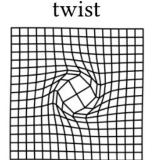
$$\nabla_{p}\mathbf{G}(\mathbf{x}) = \frac{1}{2\pi^{2}} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \mathbf{i}^{l+1} Y_{l}^{m}(\widetilde{\mathbf{x}}) \mathcal{R}_{l}(|\mathbf{x}|) \mathcal{P}_{l,p}^{m}(\mathbf{C})$$

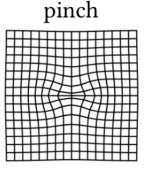
$$\mathcal{P}_{l,p}^{m}(\mathbf{C}) = \int_{\mathbb{S}^{2}} (C_{ikjl}\widetilde{\xi}_{k}\widetilde{\xi}_{l})^{-1} \overline{Y}_{l}^{m}(\widetilde{\xi}) \widetilde{\xi}_{p} d\mathbb{S}(\widetilde{\xi}).$$

• Then given an affine load $F(x) = \delta(x - x')H$

$$\mathbf{u}(\mathbf{x}) = \text{Re}[\nabla \mathbf{G}(\mathbf{x} - \mathbf{x}')] : \mathbf{H},$$



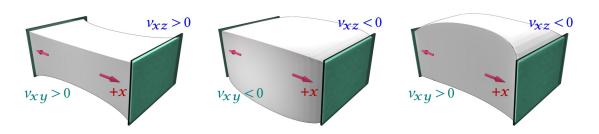




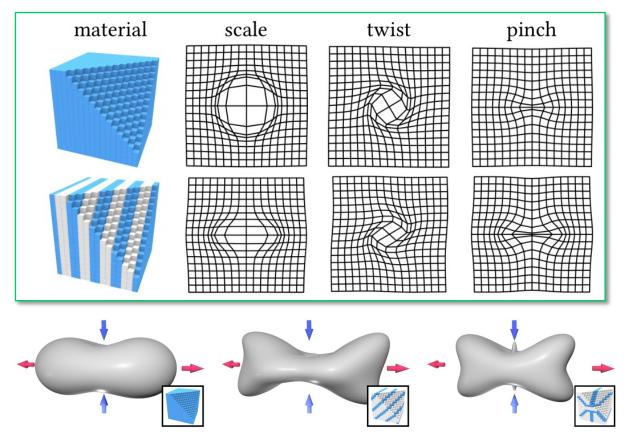
ANISOTROPY CONTROL

Specify an orthotropic material with 3 Young's moduli,
 3 shear moduli and 3 Poisson ratios

$$\mathbf{S}_{\text{orth}}^{V} = \begin{bmatrix} \frac{1}{E_{x}} & -\frac{v_{yx}}{E_{y}} & -\frac{v_{zx}}{E_{z}} & 0 & 0 & 0\\ -\frac{v_{xy}}{E_{x}} & \frac{1}{E_{y}} & -\frac{v_{zy}}{E_{z}} & 0 & 0 & 0\\ -\frac{v_{xz}}{E_{x}} & -\frac{v_{yz}}{E_{y}} & \frac{1}{E_{z}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{G_{yz}} & 0 & 0\\ 0 & 0 & 0 & 0 & \frac{1}{G_{zx}} & 0\\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G_{xy}} \end{bmatrix},$$



 Homogenize bi-materials on a regular grid [Kharevych et al. 2008]



DEFORMATION PROPAGATION CONTROL

• Specifying the impulse function $g_{\epsilon}(r)$

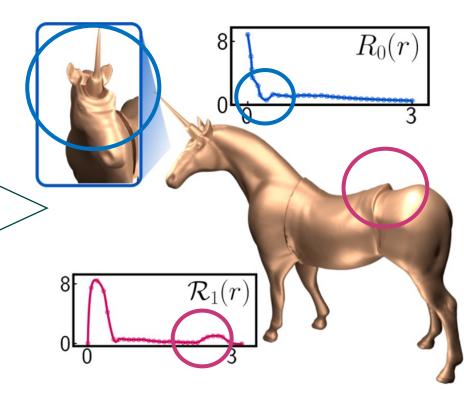
- Neither intuitive nor flexible to control
- the integral $R_l(r)$ (or $\mathcal{R}_l(r)$) is hard to evaluate for given $g_{\epsilon}(r)$
 - may not even exist!

 $\frac{h}{H} = sI$ rest pose

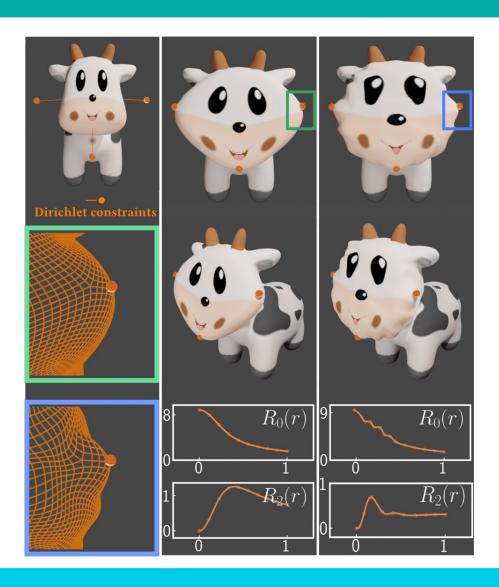
A vector load on the head A matrix load on the belly

Our approach:

- Edit $R_l(r)$ (or $\mathcal{R}_l(r)$) directly via cubic splines instead of constructing an integrable $g_{\epsilon}(r)$



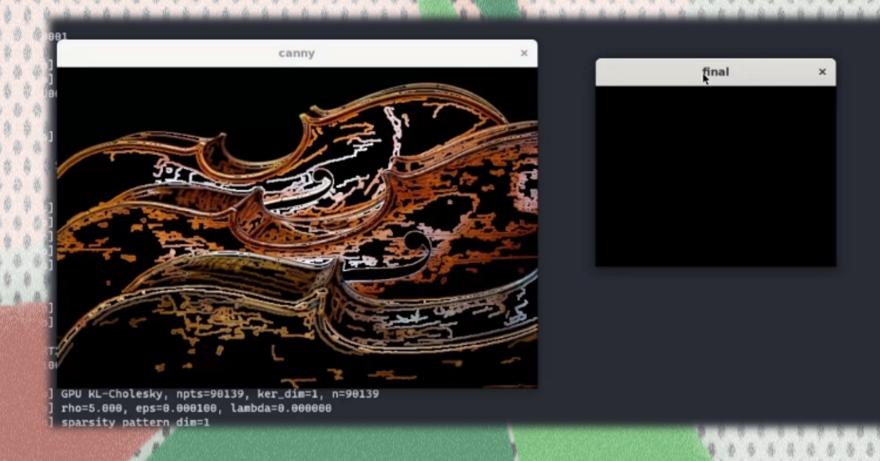
CONSTRAINED DEFORMATION

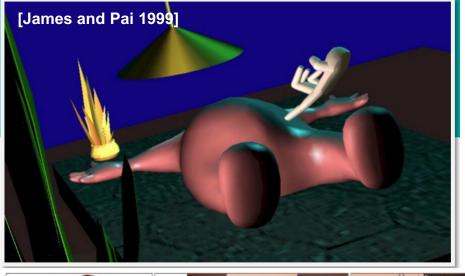


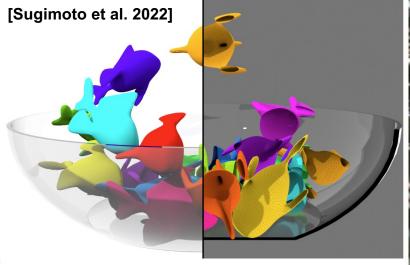
Solve a dense linear system

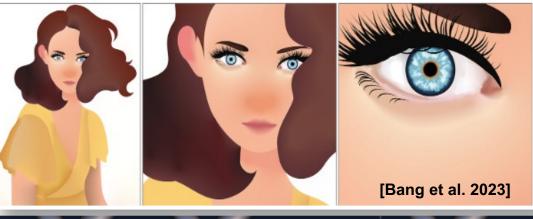
$$\begin{bmatrix} \operatorname{Re}[\mathbf{G}(\mathbf{x}_0 - \mathbf{x}_0)] & \dots & \operatorname{Re}[\mathbf{G}(\mathbf{x}_0 - \mathbf{x}_{k-1})] \\ \vdots & \ddots & \vdots \\ \operatorname{Re}[\mathbf{G}(\mathbf{x}_{k-1} - \mathbf{x}_0)] & \dots & \operatorname{Re}[\mathbf{G}(\mathbf{x}_{k-1} - \mathbf{x}_{k-1})] \end{bmatrix} \begin{bmatrix} \mathbf{h}_0 \\ \vdots \\ \mathbf{h}_{k-1} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_0 \\ \vdots \\ \mathbf{u}_{k-1} \end{bmatrix}$$

SCALABLE INVERSE FACTORIZED PRECONDITIONERS



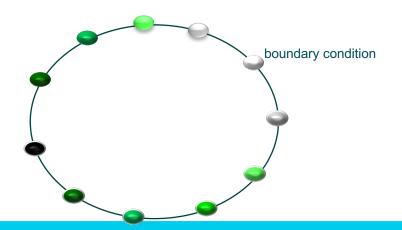


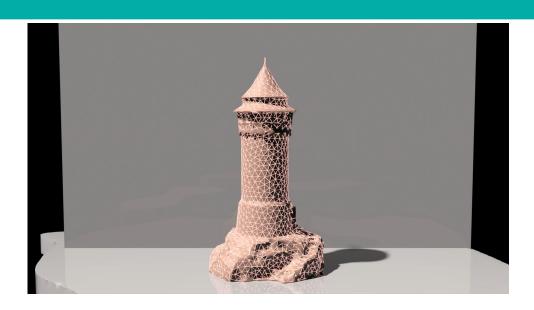




RECAP BEM

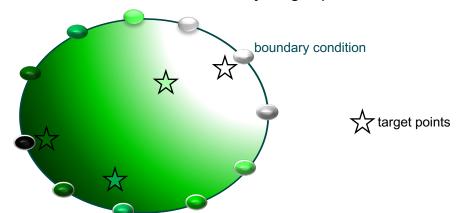
- Boundary Element Method (BEM)
 - Turn volumetric differential equations into boundary integral equations (BIE)
 - No need for volumetric tessellation, slower growth of the problem size
 - Works for infinite large domains
- Two stages of BEM
 - SOLVE for unknown boundary data from given boundary conditions
 - E.g., boundary charges producing an electric potential field

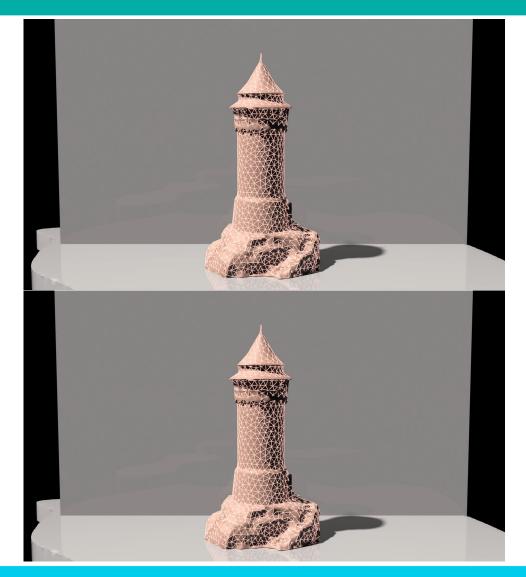




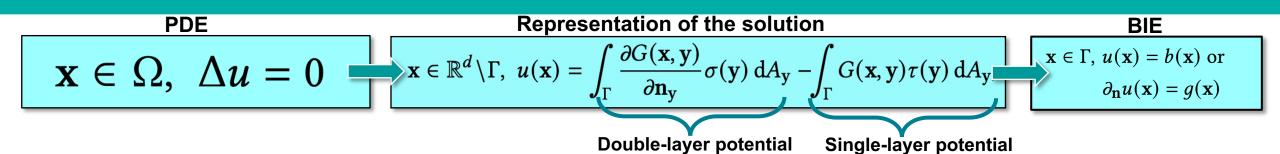
RECAP BEM

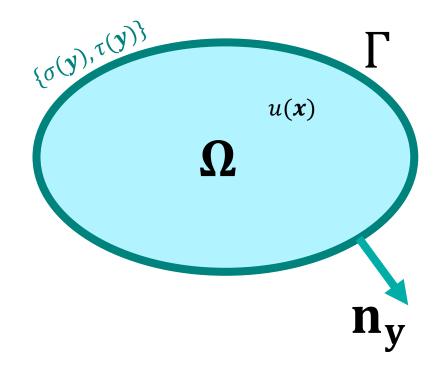
- Boundary Element Method (BEM)
 - Turn volumetric differential equations into boundary integral equations (BIE)
 - No need for volumetric tessellation, slower growth of the problem size
 - Works for infinite large domains
- Two stages of BEM
 - SOLVE for unknown boundary data from given boundary conditions
 - E.g., boundary charges producing an electric potential field
 - EXTRAPOLATE the solution at arbitrary target points from boundary data



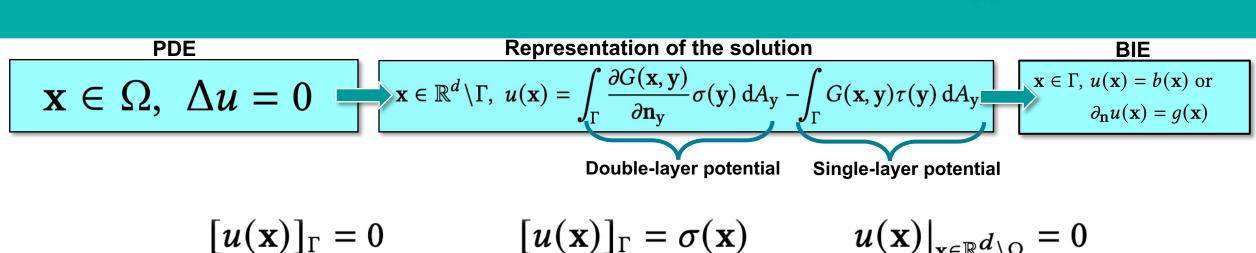


BOTTLENECK: FINDING BOUNDARY DATA

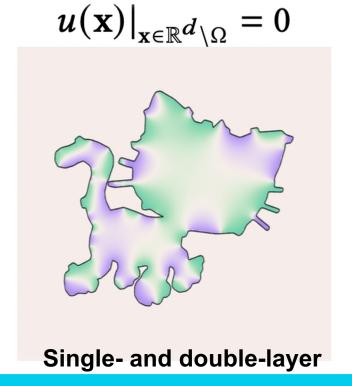




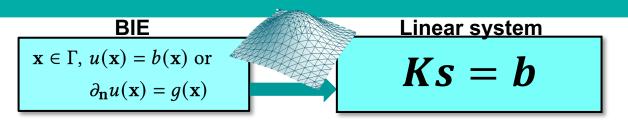
BOTTLENECK: FINDING BOUNDARY DATA



$$[a(x)]_{\Gamma} = 0$$
Single-layer only



NUMERICAL CHALLENGES POSED BY GREEN'S FUNCTIONS



The linear system is always dense

- Green's functions have non-zero values everywhere
- Storing the entire system matrix is impossible for big problems
 - **70G** for 100k boundary samples; assembly time is large too!
- Direct solvers have cubic complexity

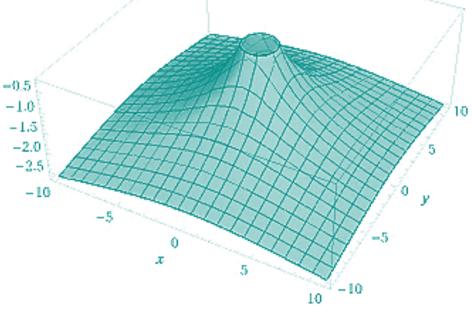
The linear system is often ill-conditioned*

- High-frequency vibrations in σ get smoothed out after integration
 - So very different σ 's map to similar b, meaning that the BIE is almost degenerate
- Iterative solvers often struggle to converge
 - multigrid approaches too memory hungry, H-matrices too inaccurate

In practice, BIE of ~25K unknowns in recent graphics papers...

There has to be a better way...

Main culprit: smoothness of the Green's function



*Fredholm integral equation of the first kind

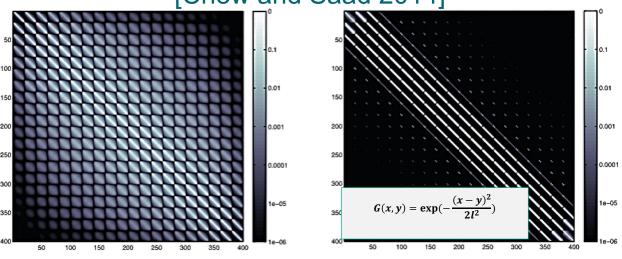
$$\mathbf{x} \in \Gamma$$
, $\int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}} = b(\mathbf{x})$

WHERE SPARSITY EMERGES

- Boundary integral operators are conceptually close to the inverse of their differential operator
 - Green function is the solution subject to a singular impulse
 - E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance
- So, the inverse of BIE matrices could be sparse
 - True for many covariance matrices assembled by fast-decaying kernel functions in Gaussian Process
 - Similar for Green's functions as well

Compliance Displacements

[Chow and Saad 2014]



(a) Inverse Laplacian matrix

(b) Inverse exponential covariance matrix

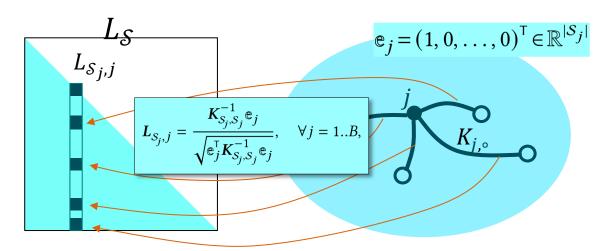
SYMMETRIC CASE: INVERSE CHOLESKY FACTORIZATION

[Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

$$Ks = b = K^{-1} \approx L_S L_S^T \Rightarrow s \approx L_S L_S^T b$$

Kaporin's construction for L_S [Kaporin 1994]

$$\boldsymbol{L}_{\mathcal{S}_{j},j} = \frac{\boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}{\sqrt{\boldsymbol{e}_{j}^{\mathsf{T}} \boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}}, \quad \forall j = 1..B,$$



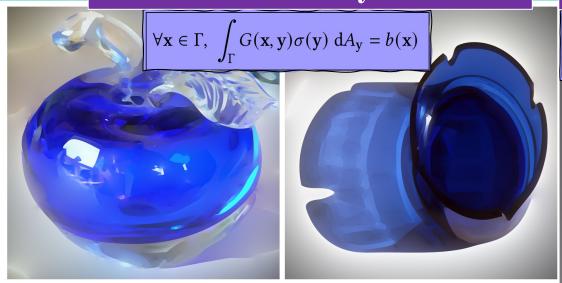
- Properties
 - Massively parallel: each column of L_S is computed independently of others. Perfect for GPUs!
 - Memory efficient: no need to assemble the global BIE matrix.
 - Stable: no breakdowns will occur
 - Variational interpretation(s): minimizing Kaporin's condition number*, KL-divergence, and a constrained quadratic form

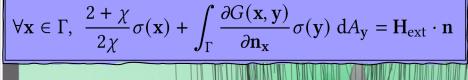
$$\star_{\mathrm{Kap}}(M) = \frac{1}{B} \frac{\mathrm{tr}(M)}{\det(M)^{1/B}}$$

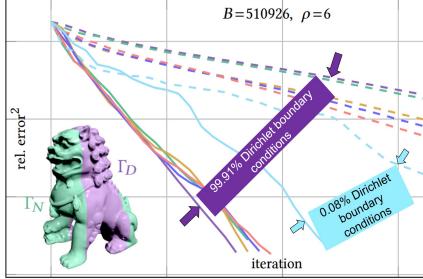
HANDLING NON-SYMMETRIC CASES

Dirichlet boundary condition

Neumann boundary condition







Mixed boundary condition

$$\frac{1 - \chi_D(\mathbf{x})}{2} u(\mathbf{x}) + \int_{\Gamma_N} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} u(\mathbf{y}) dA_{\mathbf{y}} - \int_{\Gamma_D} G(\mathbf{x}, \mathbf{y}) \frac{\partial u(\mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} dA_{\mathbf{y}}$$

$$= -\frac{\chi_D(\mathbf{x})}{2} b(\mathbf{x}) - \int_{\Gamma_D} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} b(\mathbf{y}) dA_{\mathbf{y}} + \int_{\Gamma_N} G(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) dA_{\mathbf{y}}$$

REORDERING & SPARSITY PATTERN

REORDERING

- Goal: evenly distributing point samples
 - Farthest point sampling, i.e., coarse-to-fine

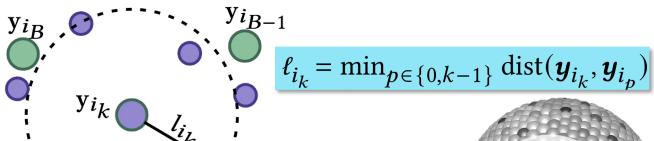
$$i_k = \underset{q}{\operatorname{argmax}} \underset{p \in \{0, k-1\}}{\min} \operatorname{dist}(\boldsymbol{y}_q, \boldsymbol{y}_{i_p}),$$

- Reverse it $P = \{i_{B-1}, ..., i_1, i_0\}$, i.e., fine-to-coarse



SPARSITY PATTERN

- Capturing those "important" nonzero fill-ins
 - Length scale returned in coarse-to-fine ordering



Lower-triangular, multiscale sparsity pattern

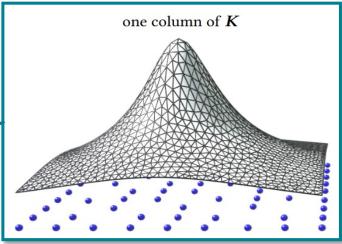
$$S := \{(i, j) | i \ge j \text{ and } \operatorname{dist}(x_i, x_j) \le \rho \min(\ell_i, \ell_j) \}$$

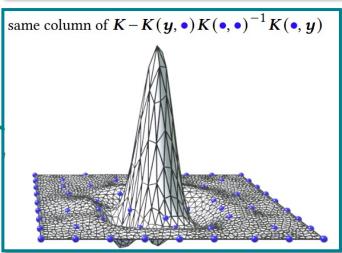
SCREENING EFFECT

- Observed in Gaussian process based regression [Stein 2002]
 - E.g., Matern covariance function
- Probabilistic interpretation
 - Green's function is smooth, impliying long-range correlations between points
 - Conditioning a smooth process on values near a target point weakens the target's correlation with more distant points

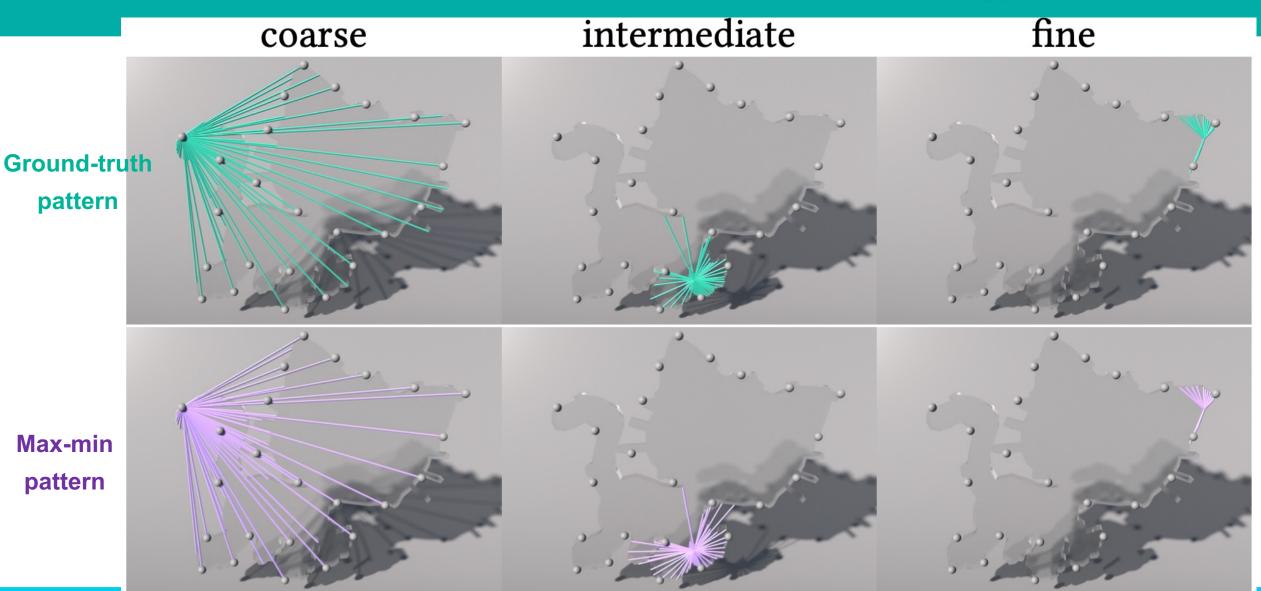
$$p(A, B, C, D) = p(A)p(B|A)p(C|A, B)p(D|A, B, C) = N(0, \Sigma)$$

$$p(A, B, C, D) \approx p(A)p(B|A)p(C|A, R)p(D|A, B, C) = N(0, (LL^{T})^{-1})$$
Too far Too far





PROOF OF CONCEPT



AN INTERESTING PARADOX

- Smoothness of the Green's function responsible for all the numerical challenges
- ... but also key to solve these problems
 - because the information provided by nearby points renders that of distant points redundant
 - proper reordering disentangles the complex correlations between points

EXAMPLES OF APPLICATION

Laplace's equation

$$\Delta u = 0$$

$$G(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2\pi} \ln(r), & \text{in 2D} \\ \frac{1}{4\pi r}, & \text{in 3D} \end{cases}$$

Linear elasticity

$$\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0,$$

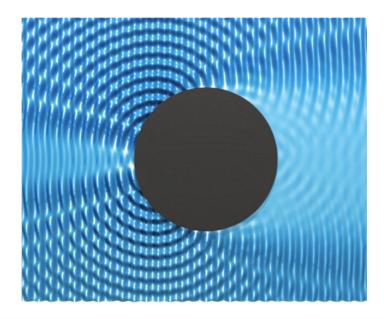
$$\Delta u + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot u) = 0,$$

$$G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{a - b}{r} \ln(1/r)\mathbf{I} + \frac{b}{r^2} \mathbf{r} \mathbf{r}^{\mathsf{T}}, & \text{in 2D} \\ \frac{a - b}{r} \mathbf{I} + \frac{b}{r^3} \mathbf{r} \mathbf{r}^{\mathsf{T}}, & \text{in 3D} \end{cases}$$

Helmholtz equation

$$\Delta u + k^2 u = 0,$$

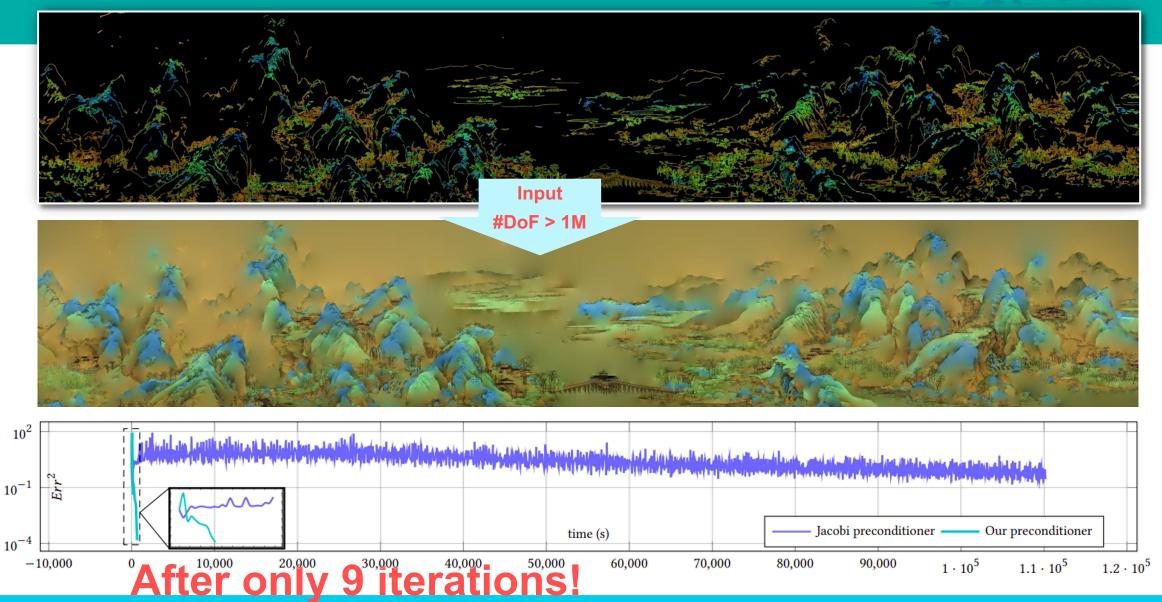
$$G(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} \frac{\mathring{1}}{4} H_0^{(1)}(kr), & \text{in 2D,} \\ \frac{\exp(\mathring{1}kr)}{4\pi r}, & \text{in 3D,} \end{cases}$$



LAPLACE'S EQUATION

LAPLACE'S EQUATION

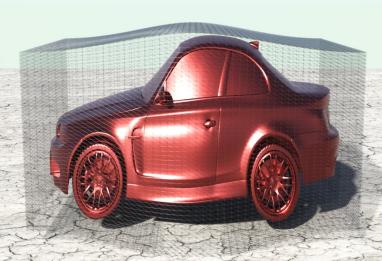
LAPLACE'S EQUATION



LINEAR ELASTICITY

 $\rho = 3$ t(precomp.) = 0.132st(comp.) = 0.644s#iter. = 10t(pcg) = 7.270st(eval.) = 11.686sErr=0.003106

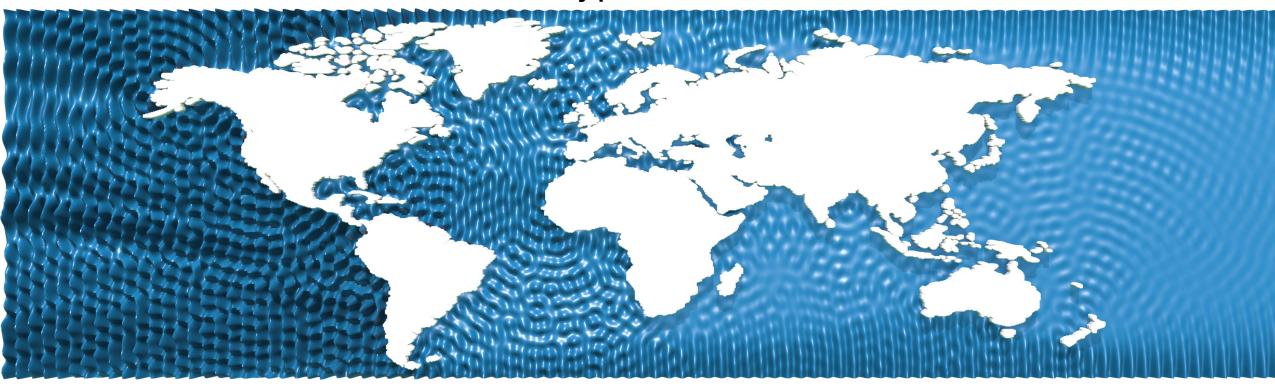
Constrained Kelvinlet deformer [de Goes and James 2017]



t(precomp.) = 0.138st(comp.) = 0.631s#iter. = 10t(pcg) = 9.168st(eval.) = 10.542sErr = 0.001526

HELMHOLTZ EQUATION

boundary points=12.7K



BEM FROM GAUSSIAN PROCESS VIEWPOINT

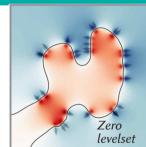
- Rendering, e.g., light transport [Seyb et al. 2024]
- Boundary value problems from a statistical point of view
 - Investigate the distribution of all possible solutions, not just a single one!
- Gaussian-process based inference vs. MFS
 - Beyond conditional mean

$$\mu(f(\mathbf{x}) \mid \mathbf{y}, f(\mathbf{y})) = K(\mathbf{x}, \mathbf{y})K(\mathbf{y}, \mathbf{y})^{-1}f(\mathbf{y}),$$

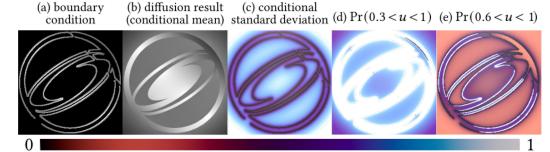
- Conditional variance for uncertainty quantification

$$\sigma_{\boldsymbol{y}_i}^2 = K(\boldsymbol{y}_i, \boldsymbol{y}_i) - K(\boldsymbol{y}_i, \boldsymbol{x})K(\boldsymbol{x}, \boldsymbol{x})^{-1}K(\boldsymbol{x}, \boldsymbol{y}_i).$$

Tell the probability of the solution falling within a given range

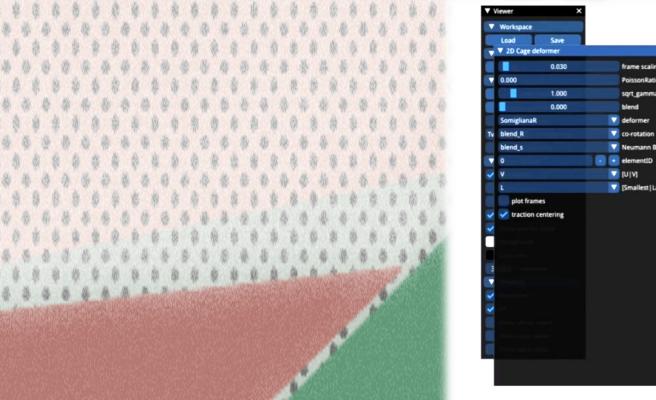


Gaussian Process	MFS
Kernel function	Green's function
Observation	Boundary condition
Conditional mean	Solution
Prediction	Evaluation

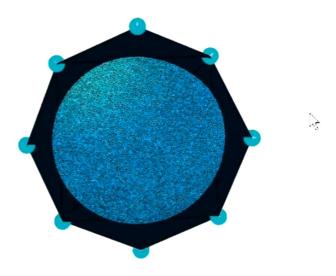


Uncertainty quantification of BIE solves

GENERALIZED BARYCENTRIC COORDINATES

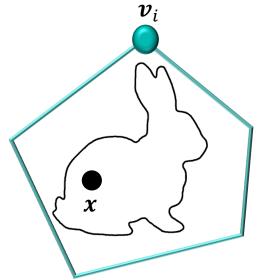


Ours (global) - zero Poisson ratio



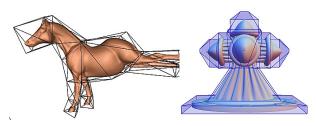
CAGE DEFORMER

- Cage deformer
 - Boundary-aware and extremely fast
 - Based on generalized barycentric coordinates
 - many options available now (see our survey [Ströter et al. 2024])

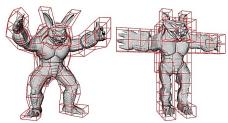


$$x = \sum_{i} \phi_{i}(x) v_{i}$$

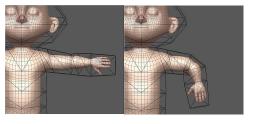
$$\widetilde{\mathbf{x}}(\mathbf{x}) = \sum_{i} \phi_{i}(\mathbf{x}) \widetilde{\mathbf{v}}_{i}$$



Mean-value coords [Floater 2003; Ju et al. 2005; Thiery et al. 2018]



Maximum entropy coords
[Hormann and Sukumar 2008]

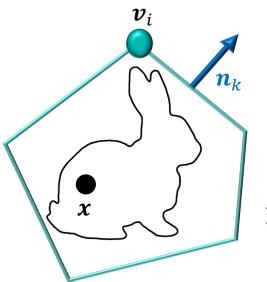


Harmonic coords [Joshi et al. 2007]

Complex coords [Weber et al. 2009]

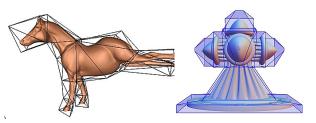
CAGE DEFORMER

- Cage deformer
 - Boundary-aware and extremely fast
 - Based on generalized barycentric coordinates
 - many options available now (see our survey [Ströter et al. 2024])

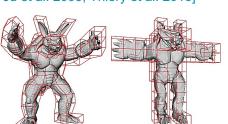


$$x = \sum_{i} \phi_{i}(x) v_{i} + \sum_{k} \psi_{k}(x) n_{k}$$

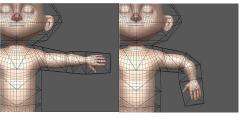
$$\widetilde{\mathbf{x}}(\mathbf{x}) = \sum_{i} \phi_{i}(\mathbf{x}) \widetilde{\mathbf{v}}_{i} + \sum_{k} \psi_{k}(\mathbf{x}) (c_{k} \widetilde{\mathbf{n}}_{k})$$



Mean-value coords [Floater 2003; Ju et al. 2005; Thiery et al. 2018]



Maximum entropy coords
[Hormann and Sukumar 2008]



Harmonic coords [Joshi et al. 2007]

Complex coords [Weber et al. 2009]

+ Green coordinates [Lipman et al. 2008]

GENERALIZED BARYCENTRIC COORDINATES WITH NORMAL CONTROL

Green coordinates

[Lipman et al. 2008]

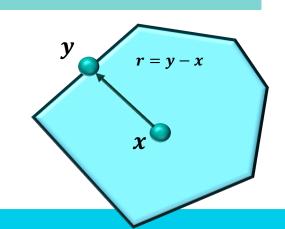
PDE

$$\Delta u = 0$$

$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases}$$

Boundary integral reformulation

$$u(x) = \int_{\partial\Omega} [\nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y)] dA_y$$



Somigliana coordinates

[Chen et al. 2023]

$$\Delta \boldsymbol{u} + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot \boldsymbol{u}) = \boldsymbol{0}$$

Green's functions
$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases} \qquad \mathcal{K}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{a-b}{r} \mathbf{I} + \frac{b}{r^3} \mathbf{r} \mathbf{r}^t, & d = 3, \\ (b-a) \log(r) \mathbf{I} + \frac{b}{r^2} \mathbf{r} \mathbf{r}^t, & d = 2. \end{cases}$$

$$u(x) = \int_{\partial\Omega} [\mathcal{T}(y, x)u(y) + \mathcal{K}(y, x)\tau(y)] dA_y$$

Biharmonic coordinates

[Thiery et al. 2024]

$$\Delta^2 \boldsymbol{u} = \boldsymbol{0}$$

$$\begin{cases} G(\mathbf{y}, \mathbf{x}) = -\frac{1}{4\pi r} \\ \bar{G}(\mathbf{y}, \mathbf{x}) = -\frac{r}{8\pi} \end{cases}$$

$$u(x) = \int_{\partial\Omega} [u(y)\nabla_n G(y, x) - G(y, x)\nabla_n u(y)]$$

$$+\Delta u(y)\nabla_n \bar{G}(y,x) - \bar{G}(y,x)\nabla_n \Delta u(y)] dA_y$$

GENERALIZED BARYCENTRIC COORDINATES WITH NORMAL CONTROL

Green coordinates

[Lipman et al. 2008]

PDE

$$\Delta u = 0$$

$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases}$$

Boundary integral reformulation

$$u(x) = \int_{\partial\Omega} [\nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y)] dA_y$$

Somigliana coordinates

[Chen et al. 2023]

$$\Delta \boldsymbol{u} + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot \boldsymbol{u}) = \boldsymbol{0}$$

Green's functions
$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases} \qquad \mathcal{K}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{a-b}{r} \mathbf{I} + \frac{b}{r^3} \mathbf{r} \mathbf{r}^t, & d = 3, \\ (b-a) \log(r) \mathbf{I} + \frac{b}{r^2} \mathbf{r} \mathbf{r}^t, & d = 2. \end{cases}$$

$$u(x) = \int_{\partial\Omega} [\mathcal{T}(y, x)u(y) + \mathcal{K}(y, x)\tau(y)] dA$$

Biharmonic coordinates

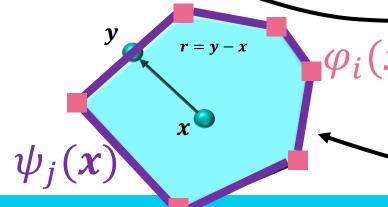
[Thiery et al. 2024]

$$\Delta^2 \boldsymbol{u} = \boldsymbol{0}$$

$$\begin{cases} G(\mathbf{y}, \mathbf{x}) = -\frac{1}{4\pi r} \\ \bar{G}(\mathbf{y}, \mathbf{x}) = -\frac{r}{8\pi} \end{cases}$$

$$u(x) = \int_{\partial\Omega} [T(y, x)u(y) + \mathcal{K}(y, x)\tau(y)] dA_y$$

$$u(x) = \int_{\partial\Omega} [u(y)\nabla_n G(y, x) - G(y, x) \nabla_n u(y) + \Delta u(y)\nabla_n \bar{G}(y, x) - \bar{G}(y, x)\nabla_n \Delta u(y)] dA_y$$



u(x) = x

GENERALIZED BARYCENTRIC COORDINATES WITH NORMAL CONTROL

Green coordinates

[Lipman et al. 2008]

PDE

$$\Delta u = 0$$

$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases}$$

Boundary integral reformulation

$$u(x) = \int_{\partial\Omega} [\nabla_n G(y, x) u(y) - G(y, x) \nabla_n u(y)] dA_y$$

Conformal mapping

Somigliana coordinates

[Chen et al. 2023]

$$\Delta \boldsymbol{u} + \frac{1}{1 - 2\nu} \nabla (\nabla \cdot \boldsymbol{u}) = \boldsymbol{0}$$

Green's functions
$$G(\mathbf{y}, \mathbf{x}) = \begin{cases} -\frac{1}{4\pi r}, & d = 3, \\ \frac{1}{2\pi} \log(r), & d = 2. \end{cases} \qquad \mathcal{K}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{a-b}{r} \mathbf{I} + \frac{b}{r^3} \mathbf{r} \mathbf{r}^t, & d = 3, \\ (b-a) \log(r) \mathbf{I} + \frac{b}{r^2} \mathbf{r} \mathbf{r}^t, & d = 2. \end{cases}$$

$$u(x) = \int_{\partial\Omega} [\mathcal{T}(y, x)u(y) + \mathcal{K}(y, x)\tau(y)] dA_{y}$$

Elastic effects, e.g., volume preserving and natural bulges

Biharmonic coordinates

[Thiery et al. 2024]

$$\Delta^2 \boldsymbol{u} = \boldsymbol{0}$$

$$\begin{cases} G(\mathbf{y}, \mathbf{x}) = -\frac{1}{4\pi r} \\ \bar{G}(\mathbf{y}, \mathbf{x}) = -\frac{r}{8\pi} \end{cases}$$

$$u(x) = \int_{\partial\Omega} [u(y)\nabla_n G(y, x) - G(y, x)\nabla_n u(y) + \Delta u(y)\nabla_n \bar{G}(y, x) - \bar{G}(y, x)\nabla_n \Delta u(y)] dA_v$$

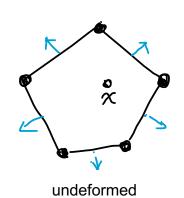
High-order smoothness. More space to incorporate boundary conditions

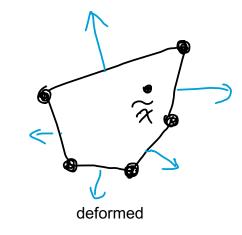
SPECIFYING BOUNDARY CONDITIONS

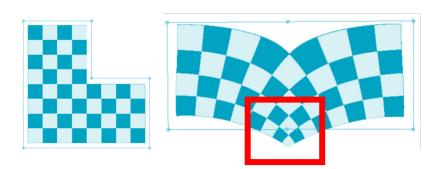
When the cage is deformed, i.e., with new specified vertex positions

$$\widetilde{\mathbf{x}}(\mathbf{x}) = \sum_{i} \varphi_{i}(\mathbf{x})\widetilde{\mathbf{v}}_{i} + \sum_{k} \psi_{k}(\mathbf{x})$$
[?]

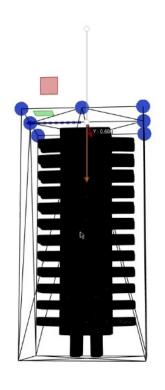
- In BEM, the normal control part is $\partial_n \widetilde{x}|_{\partial\Omega}$ solved from $\widetilde{x}|_{\partial\Omega}$
 - Dirichlet and Neumann boundary conditions are compatible
- In cage deformation, there is no golden standard so we just "guess" the boundary normal derivatives
 - Efficient for real-time manipulation
 - Parameterize Neumann conditions to support flexible control over the interior deformation
- Price to pay: normal terms are not compatible with cage vertex positions
 - Consequently, the interior deformation could be not following the cage tightly



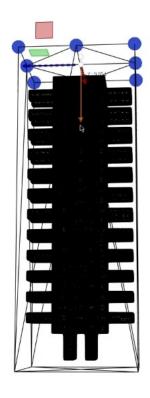




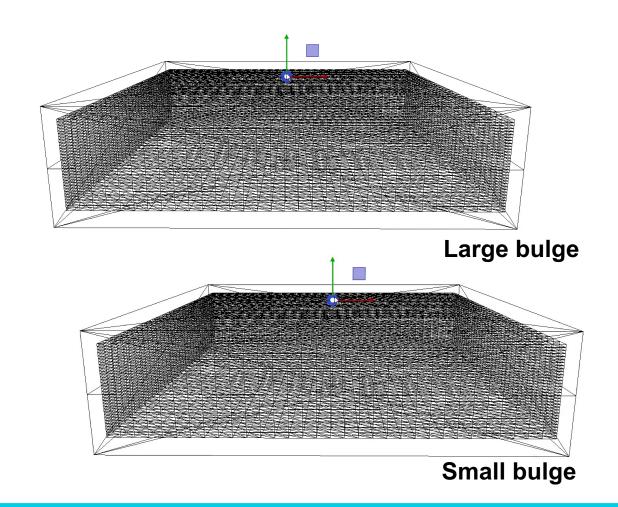
CONTROLLING BOUNDARY STRETCHING



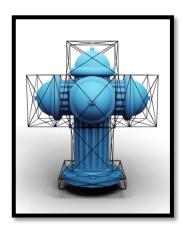
Small bulge



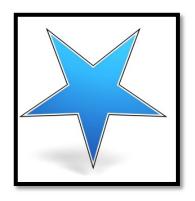
Large bulge

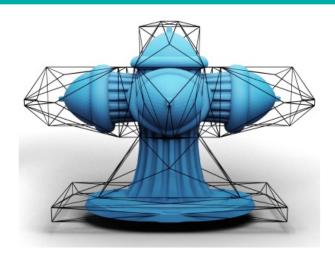


CONTROLLING BOUNDARY ROTATIONS

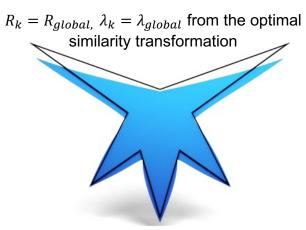


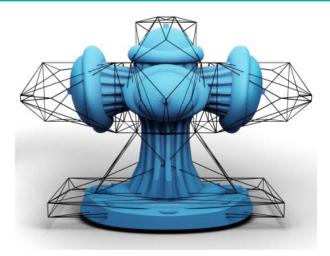
Rest pose



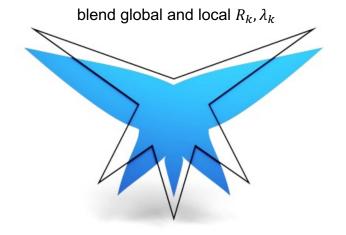


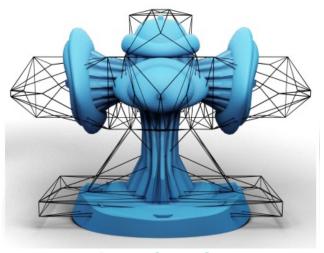
Global variant





In between





Local variant

 R_k and λ_k are decuded on per facet basis

UNFOLDING THE POWER OF GREEN'S FUNCTIONS

$$u(x) = \int G(y, x)g(y)dS_y$$

PARAMETERIZATION of the fundamental solutions to general linear operators

s.t.
$$\mathcal{D}(u)|_{\partial\Omega} = u_0$$

SCALABILITY of enforcing boundary conditions for **large- scale** problems

- Free-space shape editing
 - Enrich the expressiveness of Green's functions
- Scalable BEM solvers
 - Leverage the inherent smoothness of the Green's function for efficient inverse approximation
- Cage-based deformation
 - Explore the space of weighting to combine Green's functions for rich geometries in real-time

$$x = Gw$$

$$w = G^{-1}x$$

$$x = Gw$$

Thank you! 57