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FUNCTIONAL APPROXIMATION PERSPECTIVE

• Construct hierarchical matrix-valued basis 
functions & wavelets adapting to heterogeneous 
elasticity [Chen et al. 2018, 2019] 

PAST WORK ON DISCRETIZATION

SIGNAL SAMPLING PERSPECTIVE

• Optimize the spatial distribution of discrete 
samples by placing them where they are most 
needed [Wen et al. 2020]
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Eternal goals: high accuracy with low cost
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FROM NUMERICAL TO (SEMI-) ANALYTICAL 
APPROACHES

• Numerical approaches, e.g., FEM and FDM, 
are general-purpose methods…

• …but they may not fully exploit the properties 
of the differential operators for extreme 
efficiency

• The search for analytical solutions to PDEs 
has a much longer history than that for 
numerical ones
− Led to creation of many powerful theories and tools

• Fourier analysis, special functions, inverse scattering 
transform…

• What can we do with analytical solutions in 
modeling and simulation?

©Pixar

J. Fourier, The Analytical Theory of Heat, 1888
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Regularized Kelvinlets
 [de Goes and James 2017, 2018]
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METHOD OF GREEN’S FUNCTIONS

• Given a linear and homogeneous PDE

• A Green’s function G(x,s) is defined as

• Solution expressed via convolution

No equation solves, cheap to evaluate!

Green’s function – analytical solution to homogenous & “boundless” PDEs w.r.t. a singular impulse
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METHOD OF GREEN’S FUNCTIONS

Incapable of representing anisotropy

Singular at the origin

6



ENFORCING BOUNDARY CONDITIONS
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𝑮(𝒙, 𝒙) ⋯ 𝑮(𝒙, 𝒚)
⋮ ⋱ ⋮

𝑮(𝒚, 𝒙) ⋯ 𝑮(𝒚, 𝒚)

𝒃𝒙
⋮
𝒃𝒚

=
𝒖𝒙
⋮
𝒖𝒚

Dense linear system



BOUNDARY ELEMENT METHOD
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Only the boundary needs to 
be discretized

Interpolate / Extrapolate solutions 
from solved boundary data



BOUNDARY ELEMENT METHOD
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Only the boundary needs to 
be discretized

Interpolate / Extrapolate solutions 
from solved boundary data

Notoriously hard 
to scale up!



THE TWO CHALLENGES
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Solve modeling/simulation problems 
using the method of Green’s functions

GENERALIZABILITY to a wider 
range of linear operators and 

impulses

𝑢(𝑥) = ∫ 𝐺 𝑦, 𝑥 𝑔 𝑦 𝑑𝑆!

SCALABILITY of enforcing 
boundary conditions for large-

scale problems

𝑠. 𝑡. 	 𝒟(𝑢)|!"= 𝑢#



• Mathematical tool 
− Fourier analysis and series expansion for generalized, 

regularized Green’s functions

• Tradeoff
− No equations solves, real-time performance

− Not aware of any boundaries

APPROACHING THE CHALLENGES

10

Free-space shape editing
SIGGRAPH ’22

Applications
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Free-space shape editing
SIGGRAPH ’22

Scalable solvers for BIEs
SIGGRAPH ’24 ’25

Applications

• Mathematical tool 
− Inverse matrix factorization for preconditioning Krylov 

subspace iterations

• Tradeoff
− Not real-time due to solving dense systems

− Boundary conditions are strictly satisfied in a scalable 
manner



APPROACHING THE CHALLENGES
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Cage controlled deformation tools
SIGGRAPH ’23 ’24

Applications

• Mathematical tool 
− Generalized barycentric coordinates w.r.t. the controlling cage

• Tradeoff
− Some precomputation, no equations solves, real-time 

performance

− Aware of boundary conditions, but only approximately fulfill them



GENERALIZED GREEN’S 
FUNCTIONS
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OUR MOTIVATION

Extend Green’s function to support…

Anisotropy Arbitrary regularization



GENERALIZED GREEN’S FUNCTION OF 
ELASTICITY

• GF to elasticity equation satisfies

Material 𝑪𝒊𝒋𝒌𝒍 Impulse 𝒈𝝐(𝒙) Green’s functions

Isotropic [Kelvin 1848]

[Cortez 2001; de Goes 2017]

Anisotropic 𝑔! 𝑥 is a more general 
radially symmetric function 
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Plane wave

DERIVING GF THROUGH FOURIER TRANSFORM

• For arbitrary material and impulses, 𝐆 𝐱 	has no analytical expressions in general

• Inverse Fourier transform

• Plane-wave expansion, or Rayleigh expansion

Spherical harmonics
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GREEN’S FUNCTION IN SERIES

• Expressed in spherical coordinates, 𝐆 𝐱 	is decomposed as

16

Directional term
Radial term

Material term
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EXTENSION TO GRADIENT

• Fourier transform of partial derivative

• SH expansion of gradient

• Then given an affine load 𝐹 𝑥 = 𝛿 𝑥 − 𝑥( 𝐻
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ANISOTROPY CONTROL

• Specify an orthotropic material with 3 Young’s moduli, 
3 shear moduli and 3 Poisson ratios 

• Homogenize bi-materials on a regular grid 
[Kharevych et al. 2008]  

18



DEFORMATION PROPAGATION CONTROL

• Specifying the impulse function 𝒈𝝐(𝒓)
− Neither intuitive nor flexible to control

− the integral 𝑅!(𝑟) (or ℛ! 𝑟 ) is hard to evaluate for given 𝑔" 𝑟 	

• may not even exist!

• Our approach: 

− Edit 𝑅! 𝑟 (or ℛ! 𝑟 ) directly via cubic splines 
instead of constructing an integrable 𝑔"(𝑟)

A vector load on the head
A matrix load on the belly
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CONSTRAINED DEFORMATION

• Solve a dense linear system
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SCALABLE INVERSE FACTORIZED 
PRECONDITIONERS 
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[Da et al. 2016]

[James and Pai 1999] [Sugimoto et al. 2022]

[Xia et al. 2020]

[Bang et al. 2023]

[Huang et al. 2020]
[Umetani et al. 2016]



RECAP BEM

• Boundary Element Method (BEM)
− Turn volumetric differential equations into boundary integral equations (BIE)

− No need for volumetric tessellation, slower growth of the problem size

− Works for infinite large domains

• Two stages of BEM
− SOLVE for unknown boundary data from given boundary conditions

• E.g., boundary charges producing an electric potential field

−  EXTRAPOLATE the solution at arbitrary target points from boundary data

boundary condition
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BOTTLENECK: FINDING BOUNDARY DATA

PDE Representation of the solution BIE

𝛀

Γ

𝐧𝐲

{𝜎 𝒚
, 𝜏(𝒚

)}

𝑢(𝒙)

Single-layer potentialDouble-layer potential
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BOTTLENECK: FINDING BOUNDARY DATA

PDE Representation of the solution BIE

Single-layer potentialDouble-layer potential

Single-layer only Double-layer only Single- and double-layer
24



NUMERICAL CHALLENGES POSED BY GREEN’S 
FUNCTIONS

• The linear system is always dense
− Green’s functions have non-zero values everywhere

− Storing the entire system matrix is impossible for big problems 

• 70G for 100k boundary samples; assembly time is large too!

− Direct solvers have cubic complexity

• The linear system is often ill-conditioned*
− High-frequency vibrations in 𝜎 get smoothed out after integration

• So very different 𝜎‘s map to similar 𝑏, meaning that the BIE is almost degenerate

− Iterative solvers often struggle to converge
• multigrid approaches too memory hungry, H-matrices too inaccurate 

In practice, BIE of ~25K unknowns in recent graphics papers…

There has to be a better way…

Main culprit: 
smoothness of the Green’s function

*Fredholm integral equation of the first kind

BIE

𝑲𝒔 = 𝒃
Linear system
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𝐾𝑠 = 𝑏

WHERE SPARSITY EMERGES

§ Boundary integral operators are conceptually close 
to the inverse of their differential operator
− Green function is the solution subject to a singular impulse

− E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, 
or compliance

§ So, the inverse of BIE matrices could be sparse
− True for many covariance matrices assembled by fast-decaying 

kernel functions in Gaussian Process

− Similar for Green’s functions as well

𝐾𝑠 = 𝑏
Forces

DisplacementsCompliance

[Chow and Saad 2014]

𝑮 𝒙, 𝒚 = 𝐞𝐱𝐩(−
𝒙 − 𝒚 𝟐

𝟐𝒍𝟐 )
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SYMMETRIC CASE: INVERSE CHOLESKY 
FACTORIZATION

§ [Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

§ Kaporin’s construction for 𝐿# [Kaporin 1994]

§ Properties
− Massively parallel: each column of 𝐿! is computed independently of others. Perfect for GPUs!

− Memory efficient: no need to assemble the global BIE matrix. 

− Stable: no breakdowns will occur

− Variational interpretation(s): minimizing Kaporin’s condition number*, KL-divergence, and a constrained quadratic form

𝐾𝑠 = 𝑏 𝐾!" ≈ 𝐿#𝐿#$ 𝑠 ≈ 𝐿!𝐿"#𝑏
𝐿𝒮#,-

𝑗

𝐾-,∘

𝐿𝒮
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HANDLING NON-SYMMETRIC CASES

28

Neumann boundary condition

Mixed boundary condition

Dirichlet boundary condition



Fine-to-coarse 
reordering

REORDERING

§ Goal: evenly distributing point samples
− Farthest point sampling, i.e., coarse-to-fine                                                      

− Reverse it                                 , i.e., fine-to-coarse 

REORDERING & SPARSITY PATTERN

SPARSITY PATTERN

§ Capturing those “important” nonzero fill-ins
− Length scale returned in coarse-to-fine ordering

− Lower-triangular, multiscale sparsity pattern

29



SCREENING EFFECT

• Observed in Gaussian process based regression [Stein 2002]

− E.g., Matern covariance function

• Probabilistic interpretation

− Green’s function is smooth, impliying long-range correlations between points

− Conditioning a smooth process on values near a target point weakens the target’s 
correlation with more distant points

𝑝 𝐴, 𝐵, 𝐶, 𝐷 = 𝑝 𝐴 𝑝 𝐵 𝐴 𝑝 𝐶 𝐴, 𝐵 𝑝 𝐷 𝐴, 𝐵, 𝐶 = 𝑁(0, Σ)
𝑝(𝐴, 𝐵, 𝐶, 𝐷) ≈ 𝑝 𝐴 𝑝 𝐵 𝐴 𝑝 𝐶 𝐴, 𝐵 𝑝 𝐷 𝐴, 𝐵, 𝐶 = 𝑁(0, 𝐿𝐿/ 01)

Too far Too far



PROOF OF CONCEPT

31

Ground-truth 
pattern

Max-min 
pattern



AN INTERESTING PARADOX

• Smoothness of the Green’s function responsible for all the 
numerical challenges

• … but also key to solve these problems
− because the information provided by nearby points renders that of 

distant points redundant

− proper reordering disentangles the complex correlations between points

© Google Gemini
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EXAMPLES OF APPLICATION

Laplace’s equation Linear elasticity Helmholtz equation

33



LAPLACE’S EQUATION
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LAPLACE’S EQUATION
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LAPLACE’S EQUATION

Input
#DoF > 1M

After only 9 iterations!
34



LINEAR ELASTICITY

Densely constrained Kelvinlets

Constrained Kelvinlet deformer [de Goes and James 2017]
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HELMHOLTZ EQUATION

# boundary points=12.7K

36



BEM FROM GAUSSIAN PROCESS VIEWPOINT

§ Formulate stochasticity in Computer Graphics
− Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]

− Rendering, e.g., light transport [Seyb et al. 2024]

§ Boundary value problems from a statistical point of view
− Investigate the distribution of all possible solutions, not just a single one!

§ Gaussian-process based inference vs. MFS
− Beyond conditional mean

− Conditional variance for uncertainty quantification

− Tell the probability of the solution falling within a given range

Gaussian Process MFS
Kernel function Green’s function
Observation Boundary condition
Conditional mean Solution
Prediction Evaluation

Uncertainty quantification of BIE solves
37



GENERALIZED BARYCENTRIC 
COORDINATES
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CAGE DEFORMER

• Cage deformer
− Boundary-aware and extremely fast

− Based on generalized barycentric coordinates

• many options available now (see our survey [Ströter et al. 2024])

39

𝒙 =%
"

𝜙" 𝒙 𝒗"

𝒗2

Mean-value coords [Floater 2003; 
Ju et al. 2005; Thiery et al. 2018]

Complex coords [Weber et al. 2009]

Harmonic coords [Joshi et al. 2007]

Maximum entropy coords 
[Hormann and Sukumar 2008]

𝒙 (𝒙(𝒙) =%
"
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[Lipman et al. 2008]+ Green coordinates
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GENERALIZED BARYCENTRIC COORDINATES 
WITH NORMAL CONTROL

40

(

Green coordinates
[Lipman et al. 2008]

Δ𝒖 = 𝟎PDE

Somigliana coordinates 
[Chen et al. 2023]

𝒚

𝒙

𝒓 = 𝒚 − 𝒙

𝒖 𝒙 = '
$%
[𝒯 𝒚, 𝒙 𝒖 𝒚

+	𝒦 𝒚, 𝒙 𝝉 𝒚 ]	d𝐴𝒚

Boundary 
integral 

reformulation

𝒖 𝒙 = '
$%
[𝒖 𝒚 ∇𝒏𝐺 𝒚, 𝒙 − 𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚

+Δ𝒖 𝒚 ∇𝒏𝐺̅ 𝒚, 𝒙 − 𝐺̅ 𝒚, 𝒙 ∇𝒏Δ𝒖 𝒚 ]	d𝐴𝒚

𝒖 𝒙 = '
$%
[∇𝒏𝐺 𝒚, 𝒙 𝒖 𝒚

−𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚 ]	d𝐴𝒚	

Green’s 
functions 𝐺 𝒚, 𝒙 =

−
1
4𝜋𝑟 , 𝑑 = 3,

1
2𝜋

log 𝑟 , ~	𝑑 = 2.	

𝐺 𝒚, 𝒙 = −
1
4𝜋𝑟

 

𝐺̅ 𝒚, 𝒙 = −
𝑟
8𝜋

Biharmonic coordinates 
[Thiery et al. 2024]



GENERALIZED BARYCENTRIC COORDINATES 
WITH NORMAL CONTROL

40

(

Green coordinates
[Lipman et al. 2008]

Δ𝒖 = 𝟎PDE

Somigliana coordinates 
[Chen et al. 2023]

𝒖 𝒙 = 𝒙

𝒚

𝒙

𝒓 = 𝒚 − 𝒙

𝒖 𝒙 = '
$%
[𝒯 𝒚, 𝒙 𝒖 𝒚

+	𝒦 𝒚, 𝒙 𝝉 𝒚 ]	d𝐴𝒚

Boundary 
integral 

reformulation

𝒖 𝒙 = '
$%
[𝒖 𝒚 ∇𝒏𝐺 𝒚, 𝒙 − 𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚

+Δ𝒖 𝒚 ∇𝒏𝐺̅ 𝒚, 𝒙 − 𝐺̅ 𝒚, 𝒙 ∇𝒏Δ𝒖 𝒚 ]	d𝐴𝒚

𝒖 𝒙 = '
$%
[∇𝒏𝐺 𝒚, 𝒙 𝒖 𝒚

−𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚 ]	d𝐴𝒚	

Green’s 
functions 𝐺 𝒚, 𝒙 =

−
1
4𝜋𝑟 , 𝑑 = 3,

1
2𝜋

log 𝑟 , ~	𝑑 = 2.	

𝐺 𝒚, 𝒙 = −
1
4𝜋𝑟

 

𝐺̅ 𝒚, 𝒙 = −
𝑟
8𝜋

Biharmonic coordinates 
[Thiery et al. 2024]

𝜓!(𝒙)

𝜑"(𝒙)



GENERALIZED BARYCENTRIC COORDINATES 
WITH NORMAL CONTROL

40

(

Green coordinates
[Lipman et al. 2008]

Δ𝒖 = 𝟎PDE

Somigliana coordinates 
[Chen et al. 2023]

𝒖 𝒙 = '
$%
[𝒯 𝒚, 𝒙 𝒖 𝒚

+	𝒦 𝒚, 𝒙 𝝉 𝒚 ]	d𝐴𝒚

Boundary 
integral 

reformulation

𝒖 𝒙 = '
$%
[𝒖 𝒚 ∇𝒏𝐺 𝒚, 𝒙 − 𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚

+Δ𝒖 𝒚 ∇𝒏𝐺̅ 𝒚, 𝒙 − 𝐺̅ 𝒚, 𝒙 ∇𝒏Δ𝒖 𝒚 ]	d𝐴𝒚

𝒖 𝒙 = '
$%
[∇𝒏𝐺 𝒚, 𝒙 𝒖 𝒚

−𝐺 𝒚, 𝒙 ∇𝒏𝒖 𝒚 ]	d𝐴𝒚	

Green’s 
functions 𝐺 𝒚, 𝒙 =

−
1
4𝜋𝑟 , 𝑑 = 3,

1
2𝜋

log 𝑟 , ~	𝑑 = 2.	

𝐺 𝒚, 𝒙 = −
1
4𝜋𝑟

 

𝐺̅ 𝒚, 𝒙 = −
𝑟
8𝜋

Biharmonic coordinates 
[Thiery et al. 2024]

Conformal mapping Elastic effects, e.g., volume 
preserving and natural bulges

High-order smoothness. More 
space to incorporate boundary 
conditions



SPECIFYING BOUNDARY CONDITIONS

• When the cage is deformed, i.e., with new specified vertex positions

• In BEM, the normal control part is 𝜕𝒏#𝒙|*+ solved from #𝒙|*+	
− Dirichlet and Neumann boundary conditions are compatible

• In cage deformation, there is no golden standard so we just “guess” the 
boundary normal derivatives
− Efficient for real-time manipulation

− Parameterize Neumann conditions to support flexible control over the interior deformation  

• Price to pay: normal terms are not compatible with cage vertex positions
− Consequently, the interior deformation could be not following the cage tightly

(𝒙(𝒙) =%
"

𝜑" 𝒙 (𝒗" +%
#

𝜓# 𝒙 [? ]

undeformed deformed
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CONTROLLING BOUNDARY STRETCHING
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Small stretching

Large bulge

Small bulge

Large bulgeSmall bulge



CONTROLLING BOUNDARY ROTATIONS
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Rest pose Local variant
𝑅" and 𝜆" are decuded on per facet basis

In between
blend global and local 𝑅", 𝜆"

Global variant
𝑅" = 𝑅#$%&'$,	 𝜆" = 𝜆#$%&'$ from the optimal 

similarity transformation



UNFOLDING THE POWER OF GREEN‘S 
FUNCTIONS

• Free-space shape editing
− Enrich the expressiveness of Green’s functions

• Scalable BEM solvers
− Leverage the inherent smoothness of the Green’s function for efficient inverse approximation

• Cage-based deformation
− Explore the space of weighting to combine Green’s functions for rich geometries in real-time
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PARAMETERIZATION of the 
fundamental solutions to general

linear operators

!(#) = ∫ ' (, # * ( +,!
SCALABILITY of enforcing 

boundary conditions for large-
scale problems

!. #. 		%(')|!"= '#

𝑥 = 𝐺𝑤
𝑤 = 𝐺!"𝑥
𝑥 = 𝐺𝑤



57


