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UNFOLDING THE POWER OF GREEN’S
FUNCTIONS FOR MODELING AND
SIMULATION
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PAST WORK ON DISCRETIZATION

Eternal goals: high accuracy with low cost

FUNCTIONAL APPROXIMATION PERSPECTIVE SIGNAL SAMPLING PERSPECTIVE
« Construct hierarchical matrix-valued basis « Optimize the spatial distribution of discrete
functions & wavelets adapting to heterogeneous samples by placing them where they are most
elasticity [(Chen et al. 2018, 2019] needed [Wen et al. 2020]
co‘arsei t}} Y

X o A

Heterogeneous
material

Heterogeneous
material

Hierarchy of basis functions

samples samples



FROM NUMERICAL TO (SEMI-) ANALYTICAL

APPROACHES

| »r
Eye By ¢ e
* Numerical approaches, e.g., FEM and FDM, SR ([ AIRES A
are general-purpose methods... DE F O URIER °

 ...but they may not fully exploit the properties
of the differential operators for extreme
efficiency

M. GASTON DARBOUX,

MINISTERE DE L'INSTRUCTION PUBLIQUE.

TOME PREMIER.

« The search for analytical solutions to PDEs
has a much longer history than that for
numerical ones

. . PARIS
- Led to creation of many powerful theories and tools o T
. . . - . S guil’r:;DES“:‘SDABg: E:DLF, POLYTECHNIQUE,
» Fourier analysis, special functions, inverse scattering M DCCCLXXXVI

transform...

e

J. Fourier, The Analytical Theory of Heat, 1888



FROM NUMERICAL TO (SEMI-) ANALYTICAL
APPROACHES

©Pixar

Numerical approaches, e.g., FEM and FDM, o

are general-purpose methods...

...but they may not fully exploit the properties
of the differential operators for extreme
efficiency

The search for analytical solutions to PDEs

has a much longer history than that for
numerical ones

- Led to creation of many powerful theories and tools

* Fourier analysis, special functions, inverse scattering
transform...

What can we do with analytical solutions in

modeling and simulation? Regularized Kelvinlets
[de Goes and James 2017, 2018]




METHOD OF GREEN’S FUNCTIONS

Green’s function — analytical solution to homogenous & “boundless” PDEs w.r.t. a singular impulse

 Given a linear and homogeneous PDE 6es)

Lu(r) = f(z)

« A Green’s function G(x,s) is defined as % 222

LG(x,s)=0d(x — s) % R L2

» Solution expressed via convolution

u(x) :/G(a:, s)f(s)ds

No equation solves, cheap to evaluate!



METHOD OF GREEN’S FUNCTIONS

Differential operator L

Green's function G

Example of application

07 + 270, + w} where v < wy

ot %G(t)
&+ O(t)e
(@ +7)? O(t)te ™

o(t)e ™ ?ﬂwmw=¢gfﬁ

1D underdamped harmonic oscillator

8} + 278, + w} where y > wy

O(t)e sinl:)ﬂ with w = ‘/72 —wi

1D overdamped harmonic oscillator

0} + 270, + w? where y = wy O(t)e 't 1D critically damped harmonic oscillator
I
(oo Laplace operator V2, = 83 + 8} = Inp with p= /2% +4° ) 2D Poisson equation

3D Laplace operator V%, = 82 + 8} + 6?

_—1 with 7 = ‘/12+yz +2
4mr

Poisson equation

Helmholtz operator V2, + K?

k .k et
39 1/2 (kr)= lE h:ln(kr)

stationary 3D Schrodinger equation for free particle

V? — k¥ in n dimensions

B k nf2-1
e (£)" Kyaealor)

Yukawa potential, Feynman propagator

1
' — 2 2
D'Alembert operator [J = =z 9 —Vip

1
92 — 202 %e(t — |z/c|) 1D wave equation
1
-2 V2 —————0O(t—p/c) 2D wave equation
2D 2mey/c2t2 — p? 3
J(t - I)

3D wave equation

8, — ko? o(t) (47: t) ekt 1D diffusion
& —kVi o(t) ( 1rkt> —r*/akt 2D diffusion
9 —kVy, o(t) (ﬁ) e Tk 3D diffusion

1
S0 -8 +u
[

% [(1 = sin pect) (8(ct

— )+ d(ct + z)) + pO(ct

—|2l)Jo(uu)] with u= /P —2*

1D Klein-Gordon equation

1
0% —Vip + 4

ﬁ [(1 -+ cos(pct))

S(ct —
¥ + u*O(ct — p) sinc(uu)] with u = ,/c2t2 -0

2D Klein-Gordon equation

2
1 [o(-2 Ji (pu

O+ 2 - —( - ”) + peO(ct — T)—l (:' )] with u = m 3D Klein-Gordon equation

2 2 1, Iy (2 _ ) )
t z

0% + 278, — c*d2 3¢ 8(ct — z) + &(ct + z) + O(ct — |z|) :Ig T) with u = 4/¢ t —z telegrapher’s equation
g &(ct — v sinh 3yt cosh (= 3ctsinh (-

& +270, — Vi 64—“ [(1 +e ™+ 3%)% +O(ct — p) ( Cu( -) " ( < ) u3( -) with u = 4/c*t> — p* | 2D relativistic heat conduction
4 d(ct —r

522 + 240, — e VgD ;ﬁ [(8 — 3¢ 4+ 29t + 472,52) (_2) + i O(ct — 1) ( L I (%) + %12 7—:))] with u = /c"t* — 3D relativistic heat conduction

Incapable of representing anisotropy

Singular at the origin




ENFORCING BOUNDARY CONDITIONS == 2 2023

Dense linear system




BOUNDARY ELEMENT METHOD 20,

Only the boundary needs to Interpolate / Extrapolate solutions
be discretized ‘ from sqlved boundary data
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_

BOUNDARY ELEMENT METHOD <~ 25025

[James and Pai 1999] \ [Sugimoto et al. 2022]

Extrapolate solutions
boundary data

[Bang etal. 2023]

e
) >4

to scale up!

U 4
© =y \ % » g
= ot D E \ Y. y : g
b L . n o

-t :
[Da et al. 2016]




THE TWO CHALLENGES

Solve modeling/simulation problems
using the method of Green’s functions

u(x) = [ Gy, x)g(y)ds, s.t. D(u)|aa= ugp

GENERALIZABILITY to a wider SCALABILITY of enforcing
range of linear operators and boundary conditions for large-
Impulses scale problems




APPROACHING THE CHALLENGES

Applications

Free-space shape editing
SIGGRAPH ’22

Mathematical tool

- Fourier analysis and series expansion for generalized,
regularized Green'’s functions

*  Tradeoff

- No equations solves, real-time performance

- Not aware of any boundaries




APPROACHING THE CHALLENGES

Applications
Free-space shape editing Scalable solvers for BIEs
SIGGRAPH ’22 SIGGRAPH ’24 °25

Mathematical tool + Mathematical tool

- Inverse matrix factorization for preconditioning Krylov
subspace iterations

*  Tradeoff

- Not real-time due to solving dense systems

- Fourier analysis and series expansion for generalized,
regularized Green'’s functions

*  Tradeoff

- No equations solves, real-time performance
- Boundary conditions are strictly satisfied in a scalable

- Not aware of any boundaries
manner




APPROACHING THE CHALLENGES

Applications

Free-space shape editing Cage controlled deformation tools Scalable solvers for BIEs
SIGGRAPH ’23 ’24

B

m Brainates i
“E‘ﬁﬁWa

- Mathematical tool * Mathematical tool Mathematical tool
_  Fourlor analysls and series expansion for generalized, - Generalized barycentric coordinates w.r.t. the controlling cage Inverse matrix factorization for preconditioning Krylov
regularized Green'’s functions *  Tradeoff subspace iterations
*  Tradeoff - Some precomputation, no equations solves, real-time Tradeoff
performance Not real-time due to solving dense systems

No equations solves, i )
- Aware of boundary conditions, but only approximately fulfill them Boundary conditions are satisfied in a

- Not aware of any boundaries
manner




GENERAL'ZED GREEN'S
'FUNCTIONS =

material

P/

fundamental solution ' »

£ 4 8 4 40 4 8 8 &
B B % B 4 8% 5 80 5 &0 &

5 A 6 6 68008




OUR MOTIVATION

Extend Green’s function to support...

Anisotropy Arbitrary regularization




GENERALIZED GREEN’S FUNCTION OF

ELASTICITY

 GF to elasticity equation satisfies w\
Gy G
GV G2
/&"‘ G
G~ )
I
Material C;;, Impulse g.(x) ‘ ‘ Green’s functions

7
l‘gg(r)=15€4/(87r)(r2 +52)—z! ue(r)=| & ”’ur—grr +-—z]f Ko(r)f.
[Cortez 2001; de Goes 2017]

Ll  g.(x)is a more general 7
radially symmetric function | | | q 7

- Ye (X) N 5(X)| | 7| u(r) = (arb)1+ ,%rrt] f
ISOtropIC ™ [Kelvin 1848]

Anisotropic




DERIVING GF THROUGH FOURIER TRANSFORM

* Inverse Fourier transform

y\

Grm (€) = (Cija1&1€) " 8imGe (£).

G(x) = = | Gl explix-£) ds.

« Plane-wave expansion, or Rayleigh expansion

o 1
exp(ix- &) =4r > 1j(xIIENY" @Y, (),

=0 m=-1

degree 0
degree 1

degree 2

Spherical harmonics




DERIVING GF THROUGH FOURIER TRANSFORM

* Inverse Fourier transform

Grm (€) = (Cija1&1€) " 8imGe (£).

1/“

G(x) =  G(&) exp(ix- £) dE,

813 Jr

« Plane-wave expansion, or Rayleigh expansion

00 l 00
6 =55, 2, P 17"® [ Gu(leDixligD dlel-

=0 m=-1

RN AGEEG)

Spherical harmonics




GREEN’S FUNCTION IN SERIES

« Expressed in spherical coordinates, G(x) is decomposed as
Radial term

Directional term / " G(eDi(xllED dig

00 \
G(r.0.¢) = Z Z i )" (0, ¢) R (r) P"(C),

=0 m=-—1

/ (Cot 1 EeB) 1T (B) dS ()

Material term




material

PZIA\\N

fundamental solution

— N— +
degree 4

degree 0

. + . + y

degree 6 degree 8 degree 10




EXTENSION TO GRADIENT

» Fourier transform of partial derivative

Giip =18 Gij, p=012  |Rillx) = [ GelleDnxllgDig] diel
- SH [ f dient ~~ L _
bbbt P70 = [ (CuyBB) T BF 5B
] & | -
VoG =2 p, ) iR Ri(x) P, (C)
=0 m=-1

scale twist pinch

* Then given an affine load F(x) = 6(x — x")H
u(x) = Re[VG(x - x')] : H, £t £

111

|
|




ANISOTROPY CONTROL

« Specify an orthotropic material with 3 Young’s moduli, < Homogenize bi-materials on a regular grid
3 shear moduli and 3 Poisson ratios [Kharevych et al. 2008]

material scale twist pinch

_Yyx

-
-




DEFORMATION PROPAGATION CONTROL

« Specifying the impulse function g.(r) * Our approach:

- Neither intuitive nor flexible to control - Edit R;(r) (or R;(r)) directly via cubic splines

- the integral R,(r) (or R,(r)) is hard to evaluate for given g.(r) instead of constructing an integrable ge(r)

* may not even exist!

A vector load on the head
A matrix load on the belly

rest pose




CONSTRAINED DEFORMATION

« Solve a dense linear system

- Re[G(xo—x0)] ... Re[G(xo—x%¢_1)] |[ho | [ uo"

Re[G(xk-1 —x0)] ... Re[G(x_1 —xx_1)]] [hg—1] [ug-1.




SCALABLE INVERSE FACTORIZED
PRECONDITIONERS

] GPU KL-Cholesky, npts=96139, ker_dim=1, n=98139
] rho=5.000, eps=06.000166, lambda=0.000000
D ity pattern

21



[James and Pai 199&]
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RECAP BEM

* Boundary Element Method (BEM)

- Turn volumetric differential equations into boundary integral equations (BIE)
- No need for volumetric tessellation, slower growth of the problem size

- Works for infinite large domains

« Two stages of BEM

- SOLVE for unknown boundary data from given boundary conditions

+ E.g., boundary charges producing an electric potential field

,\\L\
\ boundary condition

-

-




RECAP BEM p N A

* Boundary Element Method (BEM)

- Turn volumetric differential equations into boundary integral equations (BIE)
- No need for volumetric tessellation, slower growth of the problem size

- Works for infinite large domains s
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« Two stages of BEM

- SOLVE for unknown boundary data from given boundary conditions

+ E.g., boundary charges producing an electric potential field

- EXTRAPOLATE the solution at arbitrary target points from boundary data

=
\ boundary condition
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BOTTLENECK: FINDING BOUNDARY DATA

PDE

Representation of the solution

BIE

|
X € Q, Au=0 g,_l,xeRd\I‘, u(x) =

oG (x,y)
T any

o(y) d4y - A G(x,y)r(y) dA

ot

0 ’1&@\
(0

Double-layer potential

x €T, u(x) = b(x) or

Inu(x) = g(x)

Single-layer potential

I




BOTTLENECK: FINDING BOUNDARY DATA

Representation of the solution BIE

PDE
| G (x, X u(x) =b(x) o
X € Q, Au — O g,_/xeRd\I‘, u(x) = (x,y) a(y) dAy — G(x,y)r(y) dAy_lq €T, u(x) _( ) or
| r ony r onu(x) = g(x)

Double-layer potential  Single-layer potential

[u(x)]I‘ =0 [u(x)]I‘ — O'(X) u(x)lxeRd\Q =0

Doubl-layer only Single- and double-layer

Single-layer only




NUMERICAL CHALLENGES POSED BY GREEN’S

FUNCTIONS

BIE o :
TEVAVASS
x €T, u(x) =b(x) or
| Ks=0b>b
dnu(x) = g(x)

* The linear system is always dense

- Green’s functions have non-zero values everywhere
- Storing the entire system matrix is impossible for big problems
70G for 100k boundary samples; assembly time is large too!

- Direct solvers have cubic complexity

* The linear system is often ill-conditioned*

- High-frequency vibrations in o get smoothed out after integration
So very different o‘s map to similar b, meaning that the BIE is almost degenerate

- Iterative solvers often struggle to converge

multigrid approaches too memory hungry, H-matrices too inaccurate

In practice, BIE of ~25K unknowns in recent graphics papers...

There has to be a better way...

=1 5
-1.0
-1.3
-2.0

*Fredholm inteqgral equation of the first kind

x €T, AG(X, y)o(y) dAy = b(x)




WHERE SPARSITY EMERGES

= Boundary integral operators are conceptually close

to the inverse of their differential operator Compliance  Displacements

- Green function is the solution subject to a singular impulse ’ ( — b
- E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, S
or compliance Forces

= So, the inverse of BIE matrices could be sparse

- True for many covariance matrices assembled by fast-decaying
kernel functions in Gaussian Process

- Similar for Green’s functions as well

0.01
0.001

0.0001

G(xy)= exp(—

50 100 150 200 250 300 350 400 50 100 150 200

(a) Inverse Laplacian matrix (b) Inverse exponential covariance matrix



SYMMETRIC CASE: INVERSE CHOLESKY

FACTORIZATION

= [Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

= Kaporin’s construction for L¢ [Kaporin 1994] Ls e;=(1,0,...,0)" eR"/
-1 LS]]
K. . e;
LS J ’ V] - 1..B, LS.j
’ T —1 .
‘\_

= Properties

Massively parallel: each column of Lg is computed independently of others. Perfect for GPUs!

Memory efficient: no need to assemble the global BIE matrix.

Stable: no breakdowns will occur

* 1 M)
Kap(M) = B det(M)'/B

Variational interpretation(s): minimizing Kaporin’s condition number”, KL-divergence, and a constrained quadratic form



HANDLING NON-SYMMETRIC CASES

Dirichlet boundary condition L Neumann boundary condltlon
‘ 1

i

K Mlxed boundary condltlon
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REORDERING & SPARSITY PATTERN

REORDERING SPARSITY PATTERN
= Goal: evenly distributing point samples = Capturing those “important” nonzero fill-ins
- Farthest point sampling, i.e., coarse-to-fine - Length scale returned in coarse-to-fine ordering

[ =argmax min

dist(y,. y; ),
¢ pe{ok-1} Y y”’)|

- Reverse it P={ig_y, ..., 11,1y}, i.e., fine-to-coarse

S:={(i, j)li > j and dist(x;, xj) < pmin(i, {’j)}

last 50 last 150 last 250



SCREENING EFFECT

one column of K

» Observed in Gaussian process based regression [Stein 2002]
- E.g., Matern covariance function

* Probabilistic interpretation

- Green’s function is smooth, impliying long-range correlations between points

- Conditioning a smooth process on values near a target point weakens the target’s

correlation with more distant points

p(4,B,C,D) = p(A)p(BIA)p(CIA, B)p(DIA, B,C) = N(0,)
p(4,B,C,D) ~ p(A)p(BIAP(CIAR)P(DIA, BN = N(O, (LL") )

Too far Too far




PROOF OF CONCEPT

intermediate

Ground-truth
pattern

Max-min
pattern



AN INTERESTING PARADOX

- Smoothness of the Green’s function responsible for all the - ©Google Gemini
numerical challenges '
* ... but also key to solve these problems

- because the information provided by nearby points renders that of
distant points redundant

— proper reordering disentangles the complex correlations between points




EXAMPLES OF APPLICATION

Laplace’s equation
Au=0

1
~5 In(r), in 2D
Gy =1 [~
e in 3D

4mr

Linear elasticity

1-—2v

1
Au+ ——V(V-u) =0,

a->b

Cxy) =9 _,

r

b

r

I+ —rrT,

3

In(1/r)I + %rrT,

r

Helmholtz equation

Au + k°u = 0,

ZH (kr),

P arebatangy M N Yy
‘,‘]l",'||l||”::b'.:"“
,,un:n,,"l(’ "b‘

I eatnas L My

,(llll

) """,l""r".;;.:.T
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thpa ,l "
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1t 1
Yy a0t

in 2D,

in 3D,



LAPLACE’S EQUATION




LAPLACE’S EQUATION




LAPLACE’S EQUATION 2=~ 29D

Input
#DoF > 1M

time (s) Jacobi preconditioner Our preconditioner

1
20,000 * 30,000 40,000 5 50,000 ' 60,000 80,000 90,000
DN ATIOr)

-




LINEAR ELASTICITY

# sources (box): 14408
# target (car): 199249

- e o
- < > ‘

" - ~.. +
P = e
= T

- < T
- -~ ~ sl
o = o =g 3
& \‘_“\ N R {
3 - -
-

e
. ~
G e Yt

= g
>

e 22 )rc:(\\»{ ,'\7 SR < . P 5 \‘,_ -\\/, T
.-« 4 Constrained Kelvinlet
p=3

t(precomp.) =0.138s

t(comp.) =0.631s

#iter.=10
t(pcg) =9.168s
t(eval.) =10.542s

- Err=0.001526

e

deformer (ds

= s ’
; # Sk
.

p

es and Jamies 2077}

p=3

t (precomp.) =0.132s
t(comp.) =0.644s
#iter.=10

Lipeg) = 7.270s
(eval.) =11.686s

— |
7
> 7\
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e e e~
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et ~ g <R
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~— _ A N e

p=3
t(precomp.) =0.182s
t(comp.) =0.633s
#iter.=10

t(pcg) =7.530s
eval.) =11.775s




HELMHOLTZ EQUATION s L 20,




BEM FROM GAUSSIAN PROCESS VIEWPOINT

oy

= Formulate stochasticity in Computer Graphics .

- Geometry processing, e.g., surface reconstruction [Sellan and Jacobson éOQZ] .

- Rendering, e.g., light transport [Seyb et al. 2024] . - == e
Gaussian Process |MFS________

= Boundary value problems from a statistical point of view

Kernel function Green’s function

- Investigate the distribution of all possible solutions, not just a single one! ) .
Observation Boundary condition

= (Gaussian-process based inference vs. MFS T Solution
- Beyond conditional mean Prediction Evaluation
-1
ll (f(x) | y, f(y)) = K(x, y)K(y, y) f(y)’ (a) boundary (b) diffusion result  (c) conditional

condition (conditional mean) standard deviation (d) Pr(0.3<u<1) (e)Pr(0.6<u<1)

- Conditional variance for uncertainty quantification
2 ~1
Oy, = K(y;,y;) — K(y;,x)K(x,x) K(x,y;).

- Tell the probability of the solution falling within a given range

Uncertainty quantification of BIE solves



plot frames
v " traction centering

v

frame scaling
PotssonRatio
sqrt_gamma
blend

deformer
Cco-rotaton
Neumann BC
elementiD

uw

[Smallest | Largest]

Ours (global)
- zero Poisson ratio




CAGE DEFORMER

« Cage deformer

- Boundary-aware and extremely fast

Mean-value coords [Floater 2003;

- Based on generalized barycentric coordinates Ju et al. 2005; Thiery et al. 2018]

* many options available now (see our survey [Stroter et al. 2024])

Vi

Maximum entropy coords
[Hormann and Sukumar 2008] Complex coords [Weber et al. 2009]

X = 2 ¢ (x)v;
y i

X(x) = ) hi(0F;




CAGE DEFORMER

« Cage deformer

- Boundary-aware and extremely fast

Mean-value coords [Floater 2003;
- Based on generalized barycentric coordinates Ju et al. 2005; Thiery et al. 2018]

* many options available now (see our survey [Stroter et al. 2024])

Vi

Maximum entropy coords
nk [Hormann and Sukumar 2008] Complex coords [Weber et al. 2009]

X = z ¢i(xX)v; + z Y ()ny,
| ; 7

+ Green coordinates [Lipman et al. 2008]

xX(x) = 2 ¢ (x)V; + z Yr(x) (cxTiy)
i K




GENERALIZED BARYCENTRIC COORDINATES

WITH NORMAL CONTROL

Green coordinates Somigliana coordinates Biharmonic coordinates
[Lipman et al. 2008] [Chen et al. 2023] [Thiery et al. 2024]
PDE Au=0 Au + V(V-u) =0 A’u=0
1—-2v

(1 o ( .
Green's ) Tame 473 —I+rrt, d=3, Gx) = —7—
functions (X)) =13 1 K(xy) = b < r

t _ _

— (b —a)log(r)I torre, d=2. G(y,x) = ~ 5
Boundary
integral

reformulation




GENERALIZED BARYCENTRIC COORDINATES

WITH NORMAL CONTROL

Green coordinates Somigliana coordinates Biharmonic coordinates
[Lipman et al. 2008] [Chen et al. 2023] [Thiery et al. 2024]
PDE Au=0 Au + V(V-u)=0 A*u=0
1-—2v
( (
1 d = a-b b ¢ 1
Green’s ) T amre =3, TI+T—3rr, d =3, G(y,x)=—4—w
functions 0 %) =1 1 Kxy) = b < r
b _

—log(r), d=2. (b —a)log(r)I + rr*, d = 2. G(y,x) = ——

| 2T r \ 8r
B.oundary ) = || [7Caman) ux) = | [T 0u®) ulx) = | [u@@)V,6(y,x)— G(y, x) V,u(y)
integral 0 Q 0Q

reformulation —G(y, x)Vu(y)] da, + K (y,x)t(y)] d4, +Au(Y)V,G (y, %) — G(y, x)VyAu(y)] dA,




GENERALIZED BARYCENTRIC COORDINATES

WITH NORMAL CONTROL

Green coordinates Somigliana coordinates Biharmonic coordinates
[Lipman et al. 2008] [Chen et al. 2023] [Thiery et al. 2024]
PDE Au=0 Au + V(V-u) =0 Au =0
1-—2v
Green’s _4_711” d =3, TI + —rrt d =3 G(}’, X) = 4_1rr
functions Gy, x) = 4 Kxy) =
t
—log(r) d= (b —a)log(r)I + —rr , d = 2. G(y,x) —
Boundary
integral
reformulation
Conformal mapping Elastic effects, e.g., volume High-order smoothness. More
preserving and natural bulges space to incorporate boundary

conditions




SPECIFYING BOUNDARY CONDITIONS

« When the cage is deformed, i.e., with new specified vertex positions
%) = ) 0B+ ) h@[?]
{ k

* In BEM, the normal control part is 0,%|5q solved from X|;q

- Dirichlet and Neumann boundary conditions are compatible undeformed deformed

 In cage deformation, there is no golden standard so we just “guess” the
boundary normal derivatives
- Efficient for real-time manipulation ..

- Parameterize Neumann conditions to support flexible control over the interior deformation

* Price to pay: normal terms are not compatible with cage vertex positions

- Consequently, the interior deformation could be not following the cage tightly




CONTROLLING BOUNDARY STRETCHING

mall bulge

Large bulge

A a—a—a
eSS S e

SSSES
SSRES
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CONTROLLING BOUNDARY ROTATIONS
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Rest pose Global variant In between Local variant

Rk = Rgiobat, Ak = Agiobar from the optimal blend global and local Ry, A Rj and A, are decuded on per facet basis
similarity transformation




UNFOLDING THE POWER OF GREEN'S

FUNCTIONS

u(x) = [ G(y,x)g(y)ds, s.t. D(u)|an= ug

PARAMETERIZATION of the SCALABILITY of enforcing

boundary conditions for large-
scale problems

fundamental solutions to general
linear operators

* Free-space shape editing x — GW

- Enrich the expressiveness of Green’s functions

« Scalable BEM solvers — _1
w=0_0G( "X

- Leverage the inherent smoothness of the Green’s function for efficient inverse approximation

« Cage-based deformation G
- Explore the space of weighting to combine Green’s functions for rich geometries in real-time x — W
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