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Figure 1: Knots in virtuality and reality. Our method can effectively adapt the discretization to the geometry of deformed Cosserat rods as
well as contact. As a result, it enables to simulate fascinating behaviors such as the dynamical evolution of shrinking knot loops, offering a
faithful virtual reproduction of real-world rod dynamics.

Abstract
Rod-like one-dimensional elastic objects often exhibit complex behaviors which pose great challenges to the discretization
method for pursuing a faithful simulation. By only moving a small portion of material points, the Eulerian-on-Lagrangian (EoL)
method already shows great adaptivity to handle sharp contact, but it is still far from enough to reproduce rich and complex
geometry details arising in simulations. In this paper, we extend the discrete configuration space by unifying all Lagrangian and
EoL nodes in representation for even more adaptivity with every sample being assigned with a dynamic material coordinate.
However, this great extension will immediately bring in much more redundancy in the dynamic system. Therefore, we propose
additional energy to control the spatial distribution of all material points, seeking to equally space them with respect to a
curvature-based density field as a monitor. This flexible approach can effectively constrain the motion of material points to
resolve numerical degeneracy, while simultaneously enables them to notably slide inside the parametric domain to account for
the shape parameterization. Besides, to accurately respond to sharp contact, our method can also insert or remove nodes online
and adjust the energy stiffness to suppress possible jittering artifacts that could be excited in a stiff system. As a result of this
hybrid rh-adaption, our proposed method is capable of reproducing many realistic rod dynamics, such as excessive bending,
twisting and knotting while only using a limited number of elements.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Simulating ropes, cables, and other strand-like physical curves has
always been an active research area in computer graphics. Due to its
one dimensional intrinsic structure, such objects can have very del-
icate and complicated behaviors like buckling and knotting. Using
a constant number of static nodes for discretization has an obvious
limitation in striking a good balance between accuracy and effi-
ciency. Since critical geometric features are generally unpredictable
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in advance, to accurately capture them, one always has to blindly
use a large number of sample points for discretization. However,
such a naive strategy will inevitably lead to huge computational
cost, while using coarse discretization instead is generally not ex-
pressive enough to capture the rich geometric details appearing in
simulation.

As an effective solution to make trade-offs between accuracy
and computational cost, adaptive methods attempt to resolve the
dilemma by seeking for smart strategies for resampling nodes.
Among all possible choices, adaptively inserting and removing
nodes is a quite common strategy which has been explored for
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years, even on the Cosserat model [ST08], which nicely captures
some complex behaviors. Such a technique is well known as the
h-adaptive FEM which adjusts spacings of elements if necessary
by dynamically changing the sampling density. Another strategy is
the r-adaptive method, sometimes also called as the moving mesh
method [BHR09,HR10]. In graphics community, the recently pop-
ularized Eulerian-on-Lagrangian (EoL for short) method [FLLP13]
shares similar insights with the r-adaptive method. The key idea
is to move the existing nodes to proper places to account for vi-
olent dynamics without having additional ones. Combined with
node inserting and removing strategy, the EoL method is capa-
ble of generating smooth dynamics without spurious jittering even
with sharp contact, whose effectiveness has been well demonstrated
on mass-spring model [SJLP11], cloth [WPLS18] and yarn-level
model [CLMMO14]. It is intuitive to directly apply the methods
by [SJLP11] to Cosserat model for a more realistic simulation, but
we notice three limitations therein.

Firstly, the existing EoL methods are mostly contact-oriented.
These methods generally put a node on the contact point and assign
the added node with a changeable material (Eulerian) coordinate.
These inserted nodes are marked as EoL nodes. Under the joint ef-
fect of collision response constraints and elastic forces, the Eulerian
coordinate can slide inside the parametric domain to address possi-
ble locking issues. For the remaining nodes, they are just treated as
pure Lagrangian whose material coordinate is always fixed, losing
the chance to get adapted in regions far from the contact area. Thus,
instead of treating EoL and Lagrangian nodes separately, we pro-
pose to unify them in representation by assigning every point with
a time-variant material coordinate. In this way, all material points
can be moved quite flexibly to adapt to rod shapes as well as contact
for an accurate simulation. In principle, our approach better reveals
the r-adaptive nature of the EoL technique and greatly extends the
configuration space to discretize governing equations.

Secondly, when incorporating Eulerian coordinates as extra
DoFs, the equation of motion will become singular because Eule-
rian and Lagrangian coordinates can be redundant in representing
physical states. To remove this degeneracy, one need to constrain
the motion of material points, and an important question to answer
is how these points should be moved. In previous works [WPLS18],
the Eulerian coordinate starts to slide if the Lagrangian ones are
locked due to over-constraining, for instance, to respond to contact
with sharp edges. Otherwise, they are restricted to stay as static as
possible. However, the Cosserat rod can have much more compli-
cated shapes due to the couplings of twist and bend, so only slid-
ing material points near contact regions is quite insufficient. Ide-
ally, the whole reference mesh should be more relaxed to move
in a wider parametric range. Inspired by the moving mesh method,
our approach requires that the spatial distribution of material points
should be equally spaced with respect to curvature distribution, thus
being able to reproduce complicated behaviors effectively.

Finally, to accurately handle contacts, improve asymptotic ap-
proximation, and avoid ill-conditioned system caused by tiny el-
ements, our method also allows to dynamically insert or remove
nodes as previous works did. However, every change to the dis-
cretization takes the risk of spurious jittering. An important crite-
rion is to preserve shape and energy [ST08]. But geometric oper-

ations like node collapsing make it hard to achieve cheaply and
could introduce drastically large fictitious ghost forces, which is
especially common in a very stiff system. Hence, we further empir-
ically adapt the elastic stiffness to compensate for the energy devi-
ation and recover it after node resampling, which helps to suppress
the jittering artifacts in practice.

The major technical contributions can be summarized as:

• Unify both Lagrangian and EoL nodes in representation to ex-
tend the discrete configuration space, and formulate a con-
strained optimization to resolve numerical degeneracy based on
a moving mesh discretization of the Cosserat rod.
• Propose to constrain material points to be equally spaced with

respect to rod curvature by an additional energy to govern the
sliding of material points. In each time step, such a strategy can
flexibly adapt the sample points to reproduce local small scale
geometry.
• Incorporate h-adaptive idea using some practical strategies to dy-

namically resample nodes. Based on that, we further empirically
adjust the energy stiffness whenever there is node collapsing to
suppress jittering artifacts probably arising in a stiff system.

2. Related Work

Elastic rod simulation The modeling and simulation of one-
dimensional flexible structure (i.e. an elastic rod) are important
problems in mechanics. Because of the existence of significant
twist and bend, rod simulations are often more complicated than
solids or thin-shells. To develop a basic model of a rod, its center-
line, represented by a material curve, must be capable of resist-
ing bending and torsion. From a historical perspective [O’R08],
Kirchhoff first presented a rod theory capable of modeling bend-
ing and torsion [Kir59], and is used to simulate the inextensible
1D elastic object in computer graphics, such as hair [BAC∗06] and
strands [BWR∗08].

In the early 20th century, the Cosserat brothers presented a for-
mulation of Kirchhoff’s rod theory [CC07, CC09] using what we
now call directors, therefore the rod theory we discuss is often con-
sidered as an example of the Cosserat rod theory. Since Pai [Pai02]
introduced the Cosserat model simulation to the graphics commu-
nity, the model has been studied and developed for years. Spillmann
et al. [ST07] developed a Cosserat rod model that uses quaternion
to represent material frames, penalize the frame to conforms to the
rod’s orientation, and measure the deformation on off-tangent di-
rections. An efficient material frame representation based on paral-
lel transport was also presented in [BWR∗08] and [BAV∗10].

To compromise simulation accuracy and computational cost,
some fast simulation methods have been developed by the graphics
community for interactive applications. Umetani et al. [USS14] de-
veloped a Cosserat rod simulation in the position based dynamics
(PBD) framework by introducing ghost points. Later, Kugelstadt et
al. [KS16] presented a PBD-based approach that discretizes mate-
rial frame orientation using quaternions without ghost points. More
recently, Soler et al. [SMSH18] proposed a projective dynamics
method that further accelerates the simulation of Cosserat rods.

h-, r- adaptive simulation Many adaptive techniques have been
employed in physics-based simulation including solid simulation
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and Eulerian and Lagrangian fluid simulation. Here, we briefly in-
troduce previous studies on adaptive simulation on structural ele-
ments. Please refer to the paper [MWN∗17] for a comprehensive
survey. Grinspun et al. [GKS02] presented an adaptive framework
by refining the basis functions rather than changing the discretiza-
tion mesh. In contrast, the h-adaptive method can physically adjust
the mesh size and dynamically remesh regions of interest for im-
proved simulation accuracy. In graphics, Narain et al. [NSO12] pre-
sented a framework to adaptively simulate clothing, which is fur-
ther extended to solve folded papers [NPO13] and view-dependent
adaptive cloth simulation. As for elastic rods, Spillmann et al.
[ST08] proposed an adaptive contact model to simulate knots. To
summarize, h-adaption is an intuitive approach to improve simula-
tion accuracy by having more degrees of freedom.

Unlike h-adaption, r-adaptive method (a.k.a. moving mesh
method) tries to find a “smart” way to reallocate degrees of free-
dom without having additional ones, hence it can get rid of possible
fictitious vibration caused by h-adaption. This kind of methods has
been studied for years [BHR09, HR10], which turns out an effec-
tive approach to accurately solve violent time-variant systems. As
a variant of the r-adaptive method, Eulerian-on-Lagrangian (EoL)
method was introduced by pioneering works [SJLP11, SLNB10],
which combined h-adaption techniques to simulate elastic cables
in contacts smoothly by allowing material points to continuously
slide inside the parametric domain. Later, this idea was further ex-
tended to simulate a variety of objects, such as skin [LSNP13], elas-
tic and elastoplastic deformable solids [FLLP13], continuum-level
cloth [WPLS18] and yarn-level cloth [CLMMO14, CLMO16].
Given the numerical singularity introduced by Eulerian coordi-
nates, these methods either try to maximize the Lagrangian ve-
locity, which should amount to restricting the Eulerian velocity in
some senses to make material points as static as possible, or apply
elastic forces to drive their dynamics as rigid as possible. How-
ever, these approaches are arguably limited in adaptivity brought
by Eulerian coordinates, seemingly going in an opposite way as
r-adaption intends. Targeting at numerical conditioning, a recent
work [SBRBO20] introduced a special type of nodes to avoid in-
finitely large stiffness resulted from tiny segments, which can be
also empirically solved by collapsing tiny segments in each step.

3. Cosserat Model under Moving Mesh Discretization

For an elastic rod Ω with rest length L, arc-length parameterization
gives the material (Eulerian) coordinate u(p) ∈ [0,L] for any point
p ∈ Ω. Its shape can be characterized as a function x : [0,L]→
R3. When applying common piecewise linear discretization, rod
shape is discretized as sequential segments ei = [xi,xi+1], and each
node xi has its material coordinate ui on the rod. Any deformation
on the material point inside the segment [ui,ui+1] can be linearly
interpolated via

x(u) = u−ui+1
ui−ui+1

xi +
ui−u

ui−ui+1
xi+1, u ∈ [ui,ui+1]. (1)

To simulate the rod dynamics, we need to specify the kinetic en-
ergy and potentials of the system to govern its dynamical evolu-
tion, which involves the integration over the velocity field ẋ(u) and

deformation gradient field

F =∇ux ∈ R3. (2)

Taking the above piecewise linear discretization, any integration
can be evaluated as the summation over all segments.

In traditional FEM, the discretization itself is regarded as static,
which means the material coordinate u of each node is a constant.
Though making the equation of motion much simpler in both math-
ematical formulation and computation, it sometimes could bring in
severe artifacts, such as the well-known over-stiffening problem or
even catastrophic locking phenomena arising in over-constrained
system. In contrast, moving mesh discretization provides each node
with a changeable material coordinate, generally described as a
time-variant function. However, this extension immediately im-
poses a question: once the material point can be moved, how should
they get moved?

Besides, the velocity of any material point is not only about the
time derivative of its spatial coordinate x now, but is also about
associated Eulerian coordinate u, which can be evaluated as the
total time derivative of the spatial coordinate [SJLP11]:

v(x,u, ẋ, u̇) = ẋ−∇ux · u̇. (3)

As discussed in previous works [FLLP13], this will make the dy-
namical system degenerate and possibly cause an unstable simula-
tion if not handled properly. Hence, another quick question arisen
is that how to address such numerical degeneracy effectively.

As we will see, these two questions eventually relate to how to
properly constrain the motion of those material points. In the fol-
lowing content of this section, we will show how to address the
above two challenges on the Cosserat model, and later demonstrate
how to integrate h-adaptive FEM idea of dynamical resampling for
an efficient rod simulation in the next section.

3.1. Cosserat model in brief

Given the material point velocity by Equation (3), the translational
kinetic energy is formulated as

Tk(x,u, ẋ, u̇) =
1
2

∫ L

0
ρπr2‖v‖2du, (4)

where r is the radius of cross section of the rod and ρ is the mate-
rial density. We should notice that now computing the integral over
the range [0,L] relies on a time-variant discretization defined by
the Eulerian coordinates {ui}. Since the velocity is configuration
dependent, the mass matrix will be consequently relying on both
Lagrangian and Eulerian coordinates, and becomes time-variant in
our simulation. Similarly, the potential also relates to both Eulerian
and Lagrangian coordinates. For instance, to keep a rod as inexten-
sible as possible, we will have a potential to penalize rod stretching
written as

Vs(x,u) =
1
2

∫ L

0
ks(‖F‖−1)2du, (5)

where ks is the stretching stiffness.
However, if only node positions are taken into account, we can-

not model the deformation along the normal and binormal direc-
tions of a curve. According to the Cosserat theory, this can be done
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Figure 2: Discretization of Cosserat rod. The discrete configura-
tion of the Cosserat rod is determined by both spatial position {xi}i
and material frames defined on each segment {ei}i, which is com-
posed of tangential, normal and binormal vectors d3,d2,d1. The
material coordinate {ui}i for each sample point is no longer static
in our moving reference discretization.

by tracking a dynamic orthonormal material frame {d1,d2,d3} on
each line segment ei (see Figure 2). In practice, the orthonormal
frames are encoded as quaternions {qi}i for computation, simply
following the treatment in [ST07].

With such a time-variant material frame field q(t), the rotational
kinetic energy is calculated as

Tr(q, q̇,u) =
1
2

∫ L

0
‖Jωωω(q, q̇)‖2du, (6)

where J ∈ R3×3 is the inertia tensor and ωωω ∈ R3 represents the
angular velocity which is computed by projecting the frame veloc-
ity q̇ into the local frame expanded by q. Similarly, we can define
elastic potential of the material frame which governs bending and
twisting of a rod as

Vb(q,u) =
1
2

∫ L

0
‖K(εεε(q)− ε̄εε)‖2du, (7)

where εεε ∈ R3 is the strain of the frame (a.k.a. Darboux vector) and
ε̄εε conforms to the natural bending and torsion of the rod based on
its original geometry, mathematically evaluated as the projection
of the spatial derivative ∇uq to the local frame q. For simplicity,
we just simulate rods that are straight in their rest states, where ε̄εε is
simply zero. Besides, the stiffness K∈R3×3 encodes the resistance
to frame deformation in different directions.

In addition, we have constraints to couple the spatial coordinate
and the material frame to enforce that the tangent deformation of
elements should coincide with the material frame in the same di-
rection, i.e.,

Cp(x,u,q) =
F
‖F‖ −d3(q) = 0, (8)

where d3 represents the tangent vector of the frame q as illustrated
in Figure 2. Once the length is preserved, this constraint can be
simply approximated as:

Cp(x,u,q) = F−d3(q) = 0. (9)

At last, since q itself represents a quaternion, it must have unit
norm, so that we have

Cq = ‖q‖−1 = 0. (10)

The technical details on computing above energies in discrete
settings will be given in appendix A and readers can also refer
to [ST07] for a thorough discussion. With our moving reference
discretization, we should always keep in mind that after discretiza-
tion, all relevant energy calculation is calculated by summing up
the contributions from each dynamically updated parametric range
on the reference domain, which are essentially functions of both
Eulerian and Lagrangian coordinates.

3.2. Constrain the motion of Eulerian coordinates

The additional Eulerian coordinate does offer a larger space to
adapt the discretization, but at the same time it can create prob-
lems of numerical degeneracy. Before diving into the details on
addressing such an issue, we firstly show how those Eulerian co-
ordinates can become redundant in representing dynamic states,
and thus make the numerical system rank-deficient and unstable
to solve if not handled properly.

When taking material coordinate into account as a part of gen-
eralized coordinates, same kinetic status can be achieved via ei-
ther Lagrangian or Eulerian motion up to a certain transforma-
tion [FLLP13]. Numerically, it is revealed by the fact that there
should exist non-zero perturbation around a given state that keeps
energies invariant. As a consequence, the mass and stiffness ma-
trices can be singular, leading to multiple feasible solutions when
integrating the equation of motion.

To clearly expose the problem, we can check the mass which
is evaluated as the second derivative of the kinetic energy w.r.t.
the generalized velocity to demonstrate the redundancy caused by
those additional Eulerian coordinates. In discrete settings, the gen-
eralized mass matrix is assembled by small blocks Mi computed
over each line segment ei:

Mi(xi,xi+1,ui,ui+1) =

ρπr2(ui+1−ui)

6


2I3×3 I3×3 −2F −F
I3×3 2I3×3 −F −2F
−2FT −FT 2FT F FT F
−FT −2FT FT F 2FT F

 , (11)

where the piecewise constant deformation gradient F is evaluated
as (xi−xi+1)/(ui−ui+1). It is easy to find that above mass matrix
is always singular, whose nullspace is spanned by two kernel vec-
tors [FT ,0T

3 ,1,0]
T and [0T

3 ,F
T ,0,1]T , meaning that as long as the

element is undergoing an infinitesimal deformation located in this
kernel space, the kinetic energy will never change although both
Lagrangian and Eulerian nodes can be notably moved. Similarly,
such degeneracy also happens to stretching potential. For instance,
the material points could always move along with Lagrangian ones
to cancel out the actual deformation once the segment length is
precisely preserved in both deformed and reference configuration.
Consequently, the rod shape can be significantly distorted without
doing any work, eventually producing ill-defined problems and thus
unstable simulations.

Knowing the source of degeneracy, we should note that the
method to address this problem is far from unique. One can quickly
add some certain constraints on either Lagrangian or Eulerian co-
ordinates to remove the nullspace, and only has to ensure the
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equation of motion is held to obtain valid dynamics. Existing
methods either try to strictly fix the Eulerian coordinates such
as traditional FEM method, or enforce them as static as possi-
ble [FLLP13, CLMMO14]. Though being able to move Eulerian
coordinates to some extent by collision response or some fictitious
friction forces, these methods arguably pose too strong restrictions
on the motion of material points, which somehow goes an opposite
way in principle as moving mesh method intends to do.

In our method, the material point can be flexibly moved to offer
better r-adaption to rod geometry. Among all possible technical so-
lutions, we make a choice standing on the point of approximation
error by FEM and constrain the motion of material points based on
a simple prior: region having a larger curvature should be more
densely sampled. To realize this target, we first construct a density
field θ : [0,L]→ R+ that reflects curvature distribution. Used as a
monitor function to control the re-distribution of material points,
our method forces the samplings to be equally spaced with respect
to this density function. More precisely, given this field θ(u), the
additional regularization term to govern the Eulerian motion can be
formulated as an optimal transport like functional, i.e.,

R(u) = ∑
i

∫
Ωi

θ(u)‖u−ui‖2du, (12)

where Ωi is the Voronoi region of node ui, and in 1D it simply
amounts to [(ui−1 + ui)/2,(ui + ui+1)/2]. This function is also
known as the variational form of the centroid Voronoi tessellation
(CVT) [LWL∗09] for meshing, where ui is also referred to a “site”
of the associated Voronoi cell. When the curve is discretized by
a chain of piece-wise linear segments, the curvature will be only
concentrated on each individual vertex and is vanishing elsewhere.
Thus, for each vertex the density function is evaluated per node as
a quadratic function with the value range of [θmin,θmax], namely

θi = θmin +θmax

(
βi

π

)2

, (13)

where each βi is the turning angle on that vertex reflecting the
change on the tangent direction, which can be seen as locally in-
tegrated curvature, and is normalized to [0,1] then. Compared to a
simple linear mapping, using quadratic one can accelerate the ma-
terial points to slide to get aggregated from flat to curved regions.
Note that this mapping is not unique, one can flexibly change this
function to customize the “acceleration” of material point sliding.
In our experiments, the contrast between θmin and θmax is generally
set as 103.

linear quadratic sine

Figure 3: Density driven resampling. Given the density function
(top), the original equally spaced nodes will be redistributed by op-
timizing energy by Equation (12) with respect to the density change
(bottom).

In 2D and 3D, the smoothness of CVT energy is C∞ if the com-

binatorial structure of the Voronoi diagram does not change, other-
wise it relates to the smoothness of the density function [LWL∗09].
In our 1D case, the rod shape is generally smooth so does the
quadratic mapping, and due to the existence of inextensible energy
it is not easy for reference elements to get inverted. Consequently,
our proposed regularization function does not introduce visible nu-
merical difficulties such as falling into undesired local minima or
being unable to converge as observed in our experiments. By treat-
ing the density field to be piece-wise constant over dual cells at
each timestep (Equation (13)), Equation (12) can be accordingly
approximated as

R(u) = ∑
i

∫ ui+ui+1
2

ui−1+ui
2

θi‖u−ui‖2du

= ∑
i

θi

24

[
(ui+1−ui)

3− (ui−ui−1)
3
]
,

(14)

which is mathematically a cubic function in all Eulerian coordi-
nates. For a boundary node, the point next to it is mirrored to form
a virtual boundary to compute the integral. Some different den-
sity functions and the resulting sampling distribution after optimiz-
ing Equation (12) are depicted in Figure 3.

3.3. Rod dynamics

In this subsection, we will show that the time stepping of Cosserat
rods with moving mesh discretization can be formulated as a
constrained optimization problem. Firstly the equation of motion
(EoM) with the generalized coordinates will be derived. For sim-
plicity of exposition, we only discuss the nodal position part, i.e.,
x and u. As for material frame q, its associated equation of motion
is provided in Appendix B under a similar treatment as positional
variables.

With the extended Eulerian coordinate, the dynamic state of a
rod can be described by the generalized coordinate r = [xT ,uT ]T

and its velocity ṙ. By constructing the system Lagrangian L =
Tk−Vs and applying the well-known Euler-Lagrange equation, the
equation of motion can be finally derived as

EoM(r, ṙ) : Ṁ(r)ṙ+M(r)r̈− ∂Tk
∂r

+
∂Vs

∂r
= g, (15)

where M(r) is the position-dependent mass and g is the external
force. As discussed in Section 3.2, the Eulerian coordinates need to
be further constrained in addition to the equation of motion for an
adaptive redistribution. Therefore, we can formulate the time step-
ping from nth step to n+1 as a constrained optimization problem:

argmin
rn+1

R(un+1;θθθ
n)

s. t. EoM(rn+1;rn, ṙn) = 0,

EoM(qn+1;qn, q̇n) = 0,

C(rn+1,qn+1) = 0,

W (rn+1,qn+1)≥ 0,

(16)

where the regularization term refers to Equation (14), and θθθ
n de-

notes the density vector from the nth step and is evaluated at each
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point by Equation (13). In addition, the catenation of all equality
constraints in dynamical system is denoted by C, such as boundary
fixing conditions, coupling constraints Cp (Equation (9)), quater-
nion constraints Cq (Equation (10)), etc. The other symbol W repre-
sents for all inequality constraints, mainly consisting of all collision
response constraints (see Section 5.2).

To have a stable simulation, we use the implicit Euler method to
integrate the equation of motion. However, strictly applying the im-
plicit Euler scheme to Equation (15) can be very complicated since
mass is constantly changing. For simplicity, we technically take a
combination of implicit and explicit treatment on the unknowns ap-
pearing in different places in the EoM. For instance, the resulting
time-stepping equation for rn+1 can be approximated as

M(rn)
rn+1− rn−hṙn

h2 +
∂Vs

∂r
(rn+1) = g, (17)

where h is the time step generally set as 8×10−3s in our exper-
iments. Note that two terms, i.e., Ṁ(r)ṙ and −∂Tk/∂r in Equa-
tion (15) are dropped in above equation, similar to the approach
done in [SJLP11]. The intuition here is that as long as the motions
of material points are not violent, these two terms are basically sub-
tle and thus can be safely neglected. Such a treatment makes the
evaluation much simpler while does not harm physical realism too
much. We will give relevant algorithmic details on solving prob-
lem (16) in Section 5.2.

4. Adaptive Resampling

Though being adaptive to rod geometry by redistributing material
points under the government of the CVT regularization, the dis-
cretization can be still limited to capture sharp changes on dynamic
states, which are often caused by some unpredictable instantaneous
impulses such as a sudden contact. To get over the limitation of
using a fixed number of elements, we further equip our moving
reference discretization with h-adaptivity, which allows to insert
or merge sampling nodes online to balance physical accuracy and
numerical efficiency, a crucial feature especially indispensable for
contact intensive environments.

In this section, we will briefly introduce the geometric crite-
ria for node insertion and deletion. Since similar topics have been
greatly explored in graphics community and we just explain nec-
essary technical details to make the paper self-contained, without
introducing too many novel observations or techniques. It is worth
mentioning that once the nodes have been removed, our method
will accordingly adjust the elastic stiffness to suppress possible jit-
tering probably showing up in a stiff system, and the modified stiff-
ness will be gradually restored in following simulations.

4.1. Geometric criteria

To begin with, we will explain the criteria to determine when and
where to insert or delete sample points.

Node insertion One typical scenario that needs to insert additional
nodes is when a rod is contacting a sharp edge on rigid bodies
(see Figure 4 (a)). The initial discretization likely cannot have a
sample point at the collision point, which will inevitably produce

spurious jittering in the simulation. To address this problem, we
choose to insert a node exactly at the collision point whenever the
rod is hitting a sharp edge of obstacles. Also, rods can contact them-
selves, for instance in a process of forming knots. Similarly, we will
insert a node for each colliding segment at the self-collision point
whenever two segments are hitting each other (see Figure 4 (b)).
Lastly, the rod is of one-dimensional structure in geometry, and
this fact makes it very easy to bend and twist, often deforming into
shapes with sharply varying curvature. In this situation, the mate-
rial points can automatically slide towards curved regions from flat
regions where segment length can accordingly become too long.
Thus, to avoid a too long element, a node will be inserted at the
center of a line segment whenever its length is exceeding a given
tolerance relative to the initial average element length (see Figure 4
(c)). On the one side, this prevents having too many long elements
on flat regions, while it is also a source to inject more nodes, which
is in charge of providing sufficient DoFs to improve the asymptotic
accuracy of r-adaption.

(a) (b) (c)

Figure 4: Node insertion. When a line segment is contacting an
edge of a rigid body, or it hits another rod segment, or its length
over exceeds a tolerance, additional nodes will be inserted.

Node reduction Suppose that a rod is hitting an object and if the
collision lasts for a period of time, constantly inserting new nodes
around collision points could produce a large number of samplings
residing in a small contact region. A similar situation could also
happen to highly curved region due to node sliding. As system ad-
vances, these tiny segments are probably no longer critical to cap-
ture sharp features on a rod, but instead might make the system
infinitely stiff [SBRBO20]. Therefore, considering both numerical
conditioning and computational efficiency, we technically collapse
all tiny line segments in practice as [SJLP11] did, as long as the seg-
ment length is smaller than a given tolerance relevant to the length
scale used for collision detection.

rold
i

rold
i+1

rnew
iri−1 ri−1

ri+2ri+2

Figure 5: Node collapsing. Our node collapsing strategy is aware
of collision constraint and its historical information, which empir-
ically alleviates jittering artifacts produced by naive averaging for
node reduction. In this figure, rold

i is an old collision point that has
been staying at the collision point for a while, hence it has the high-
est priority. Node rold

i+1 is an ordinary one so it will be merged into
rold
i to generate a new node rnew

i .

When trying to collapse two neighboring nodes, the position of
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the new collapsed node has to be decided anyway. As one can imag-
ine, a naive averaging will inevitably produce many undesired jit-
tering artifacts. To remedy this issue, [WPLS18] merges the nodes
based on their attached labels, either as EoL or Lagrangian. Here
we inherit a similar idea but perform node collapsing in a slightly
different way. Our strategy is based on the historical constraint in-
formation recorded by each node. If one of two nodes had edge
collisions in the last time step, it will have the highest priority
for merging, which means that its neighboring nodes will be al-
ways merged into it. This kind of node is actually critical for ex-
actly maintaining the corner shape of a rod passing a sharp edge,
which also makes the remeshing process more stable. In contrast,
if a freshly inserted node was assigned a higher priority, the mesh
would jitter drastically in contact areas. Additionally, if a node only
has edge collisions in the current step, it will be assigned a medium
priority. Lastly, the nodes without any contacts in two consecu-
tive steps have the lowest merging priority. Although our priority
scheme cannot fully eliminate jittering for arbitrary collapsing, it
generally works well in practice. Figure 5 gives an illustration.

If two nodes with the same priority are going to be merged, e.g.
represented by ri and ri+1 respectively, the final position of the
collapsed node is obtained by

rnew
i =

βi

βi +βi+1
rold

i +
βi+1

βi +βi+1
rold

i+1,

where β stands for the turning angle, and such a merging scheme is
adapted to the local geometry as a way to identify nodal importance
for node collapsing. Notice that the denominator in above equation
can be zero, which means both nodes are in a straight line, in which
case the new node will be simply laid at the middle point.

4.2. Physical model adaptation

Node insertion As above, the node insertion mechanism can be
triggered for three reasons: collisions with sharp features, self col-
lisions, and long segments. After getting the position of an inserted
node, both Lagrangian and Eulerian velocity of this node is com-
puted by simple linear interpolation. To avoid increasing bending
and twisting energy, the initial frame strain ε̄εε at the new node is set
to be zero, and the original material will be copied to the splitted
segments. In this way, there will be no potential energy increase in
bending and twisting when there are node insertions.

Node reduction Compared to node insertion, energy adaptation
for node reduction is more involved. As we have pointed out, every
change to the discretization will take a risk of jittering. Merging
two nodes into a new one will obviously change the local config-
uration and result in a loss, which could cause significant energy
deviation in potentials, especially severe for the stretching part due
to the triangular inequality. As a consequence, the ghost stretch-
ing forces introduced by node collapsing can be very large, which
likely leads to drastic jittering or even makes the system matrix in-
definite. One of the approaches to reduce the jittering is proposed
by [NPO13] which modifies the node positions to avoid a large
jumping in forces. Instead, we propose to adaptively adjust the stiff-
ness to alleviate this problem without changing node positions for
simplicity.

— stiff system — — soft system —
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Figure 6: Stiffness adjustment. Dragging a rod along a cube edge
will trigger the mechanism on node insertion and reduction. For a
stiff system (left), merging nodes can introduce a drastically large
ghost force as showing up around the 400th frame and cause spu-
rious jittering visually. With our strategy to adjust the stiffness af-
ter node reduction, such an artifact is alleviated in terms of both
stretching force magnitude and visual smoothness. Moreover, such
adaption still behaves consistently for a soft system (right), without
a notable deviation from the non-adaptive version as a reference.

Taking Figure 5 for an illustration, after collapsing the tiny ele-
ments, the original three line segments will be merged into two. Our
idea to adapt the stiffness is to keep the stretching energy of the re-
mained elements unchanged after collapsing. For instance, denote
the old and new energy values calculated with original stiffness ks
on segment [ri−1,ri] as Vs(ri−1,ri) and V ′s (ri−1,ri) respectively.
To keep the stretching energy unchanged, we can adjust the stiff-
ness of this segment to the ratio between the old and new energy
values, i.e. Vs(ri−1,ri)/V ′s (ri−1,ri). If there is no stretch on this
segment, it is not necessary to adjust the stiffness. Also, to prevent
the adapted stiffness from being too soft or too stiff, we will further
clamp the stiffness in a given range in practice. The range is gen-
erally bounded by 0.1 and 10 times of the original stiffness in our
experiments. Other strong energies in the system can be also treated
in this way if node collapsing is occurring. The effect of adapting
the stretching stiffness is present in Figure 6.

To keep the mechanical consistency after node resampling, the
modified stiffness will be restored to its original value in the up-
coming frames. In each frame, the algorithm will iterate over each
segment without collisions and recover its stiffness if necessary to
an intermediate value at a prescribed recovery speed.

As we can see, while h-adaption could cause some undesired
artifacts indeed and there seems no perfect way to deal with such
issues, it still greatly improve the asymptotic accuracy of the dis-
cretization on a positive side. Instead, pure r-adaptive method is
popping-free but its accuracy is generally limited by its initial
discretization granularity. Therefore, by combing both r- and h-
adaption, the expressivity of our method has been significantly
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strengthened so that it can capture complex dynamics with only
limited DoFs.

5. Results

In this section, we first provide a sketch of our simulation pipeline
for each single time step, and then give the implementation details
on handling collisions and solving the constrained optimization.
Next, several testing cases are present to demonstrate the effective-
ness of our proposed method.

5.1. Simulation pipeline

The simulation pipeline for each timestep is summarized in Algo-
rithm 1. At the beginning of each step, we update the bounding
volume hierarchy tree and detect all collisions. After that, accord-
ing to the collision registration, we resample the material nodes for
h-adaption. Next, we compute internal and external forces, stiff-
ness and mass matrices, identify constraints, construct the equation
of motion and finally solve the problem 16 to update dynamic states
of the system. It should be noted that in this process, we do not la-
bel or tag nodes being EoL or Lagrangian as [WPLS18] did, but we
do distinguish nodes based on their types of associated constraints
for node merging as mentioned.

Algorithm 1 Time stepping pipeline
1: while simulating do
2: Collision detection. (§ 5.2)
3: Resample. (§ 4)
4: Compute force and apply constraint. (§ 3.1)
5: Solve problem (16) to update velocities and positions. (§ 3.3)
6: end while

5.2. Implementation details

Collision handling The collision handling includes two steps: col-
lision detection and collision response. As for detection, we simply
adopt the methods proposed by [BFA02]. An axis-aligned bound-
ing box hierarchy is used to accelerate the detection of proximity of
possible collision primitives, which is built up-bottom once at the
beginning of each step using the geometry of the objects. Checking
proximity of geometric primitives can be atomized into two fun-
damental tests, i.e. vertex-face and edge-edge intersections. If the
distance between elements is below a tiny rounding tolerance, we
will register a collision for these corresponding elements.

As for collision response, we mainly follow the methods used in
[WPLS18]. Existing contacts can be resolved by adding inequality
constraints to the optimization problem for time stepping. Techni-
cally, the constraints can be classified into three types:

• Vertex-face constraint: if the vertex xi collides with a triangular
face of a rigid body with a normal vector n, we will constrain its
Lagrangian velocity such that (vi− vr) · n ≥ 0, where vr is the
velocity of the rigid obstacle.
• Vertex-edge constraint: because we dynamically insert nodes at

collision points, the collision between a rod segment and an ob-
stacle edge can be turned into vertex-edge constraints for rigid
body contacts. Specifically, for a node xi contacting a solid edge,

the associated vertex-edge constraint can be transformed into
two vertex-face constraints assembled on the two neighboring
faces of that edge.
• Edge-edge constraint: above two types of constraints are used

for handling collisions with sharp features on rigid bodies. For
self contact, vertex-edge constraints are not enough to avoid self-
penetration in our experiments, because there could be large
amounts of collisions from different directions happening to one
single segment. Thus, we use edge-edge constraints for self colli-
sions. In our implementation, we apply inequality constraints on
two ending nodes of contacting edges in order to separate two
contacting edges. Related details are referred to [BFA02].

Solving constrained optimization In practice, we technically
make some approximation when solving the constrained optimiza-
tion given by Equation (16) for efficiency consideration. Some of
the equality constraints are relaxed as soft penalties in our cur-
rent implementation with a large weight, such as the coupling
constraint given in Equation (9), which follows the same treat-
ment applied by [ST07]. Besides, the EoM as a constraint can
be also relaxed by sacrificing a bit of physical accuracy to inter-
change computational efficiency. After making EoM constraint as
penalty functions, the objective is optimized subject to other in-
equality constraints (mainly resulted from collisions) by quadratic
sequential programming. We simply take the implementation from
Mosek [ApS19] code-wise, and relevant algorithmic details can be
referred to [ART03]. Since the weight for EoM penalty is gener-
ally set 106 times larger than that for regularization term, we still
observe enough dynamics and do not find any notable artifacts by
conducting above relaxation. As for the unit length constraint im-
posed on quaternion (Equation (10)), a simple post normalization at
the end of each step is already enough to generate plausible results.
Considering potentially intensive collisions in simulation scenar-
ios, our prescribed time step is not set that large in order to prevent
undesired penetrations. As a consequence, one or two times of iter-
ations for each time step is mostly enough.

5.3. Simulation testings

We implemented our simulation algorithm in C++ and ran the test-
ings on a desktop with an Intel Core i7-6700HQ CPU@2.60 GHz
and 8 GB of RAM. We use Eigen library [GJ∗10] for linear algebra
and Mosek [ApS19] for quadratic programming to solve the time
stepping. All the testing cases present in this paper can run in real-
time performance. In this section, we will present some simulated
dynamics to demonstrate the effectiveness of our method. The ani-
mation can be seen in the accompanying video.

Twisting Due to the coupling of bending and twisting, if both ends
of the rod are pulled in opposite directions and twisted simulta-
neously, the rod will form knots near the middle part. As shown
in Figure 7, from the close-up figures and the bottom plots of the
reference mesh we can see that the nodes are re-distributed more
compactly in regions with high curvature values, which makes the
simulated dynamics more smooth and plausible. Also, the second
column clearly shows that additional samplings can be automati-
cally inserted if there are self-collisions. And in the last column, it
turns out that our method can well reproduce complex geometric
details of multiple knot loops when the rod is getting excessively
twisted.
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Figure 7: Twisting with self-contact. Cosserat rod can produce knots when both ends are pulled in opposite directions and twisted simulta-
neously. As the system evolves, the rod shapes become increasingly complex due to knotting, forming a non-uniform curvature distribution.
With our r-adaptive strategy, the original uniformly spaced reference mesh can slide or split to adapt to the local curvature as well as con-
tacts which is illustrated in the close-up figures. The bottom row plots time-variant reference mesh changing with rod geometry, where deeper
color corresponds to a larger curvature value.

Figure 8: Rigid body contact. When dragging one end of a soft
rope to make it slide along a sharp edge of an obstacle, our method
will always have a node on the collision point, which ensures that
the velocities can be smoothly transited along the collision edge
with the help of the Eulerian coordinates. Also, since the collision
point has the highest curvature, samplings will be moved towards
the collision area, which further refines the dynamical smoothness.

Rigid body contact By incorporating h-adaption, our method can
accurately handle collisions, where there are always sharp changes
on dynamical states which are generally challenging for the initial
discretization to capture. As illustrated by Figure 8, when the rod
is contacting with a sharp feature on a rigid body, our method can
guarantee that there will be always one node at the collision point to
transit the material points from one side to the other. Thus, the rod
can slide smoothly along the edge without any obvious artificial
jittering even only using a small number of elements. Moreover,
notice that the discretization is denser near the collision point, and

Figure 9: Crack of a whip. By moving the material points accord-
ing to the curvature distribution, our method can simulate a crack-
ing whip with a loop of varying size propagating along the rod.

it is exactly caused by our r-adaptive strategy for reallocating ma-
terial points, which further helps to improve the smoothness near
the contact region for rod sliding. In another example illustrated
by Figure 10, the rods are falling and wrapping around the ob-
stacles, where the discretization for rods and cylinders are nicely
matched up as shown by the close-up figure.

A cracking whip Figure 9 illustrates one of the screenshots from
a sequence of a simulated cracking whip. As for initialization, one
end of the rod is given an instant impulse to revolve it. When the
loop propagates forward, its size will shrink with a decreasing ra-
dius. By using our method, material points can automatically slide
to the loop region, preserving its geometry smoothly and accu-
rately. As a comparison, our simulated result is similar to the real-
world experiment.

Knot sliding Starting from a shape with knots, our method can
perfectly simulate the knot sliding motivated by dragging two ends
of the rod. As shown in Figure 11, our method can push the material
points to concentrate in the middle of the rod, where the knot loop is
gradually shrinking with increasing curvature values. Finally, under
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Figure 10: Rod wrapping. In three different settings of rigid obsta-
cles, the rod is falling under the gravity and is gradually wrapping
around the obstacles. As the close-up figure shows on the bottom
right corner, dynamic node insertion can adapt the reference mesh
to tightly match up with the discretization of rigid bodies, produc-
ing an artifact-free contact simulation.

Figure #Vmin #Vmax Collision Resample Force Solve Total

Fig.8 11 23 0.0988 0.0194 1.18 14.6 15.9
Fig.7 20 88 0.989 0.507 4.14 28.6 34.2
Fig.9 36 36 / / 1.93 17.3 19.2

Fig.10(4 cylinders) 49 153 0.724 0.410 5.55 29.7 36.4
Fig.11(blue) 47 53 0.408 0.0162 2.94 21.0 24.4
Fig.11(green) 107 115 0.952 0.0384 5.98 36.5 43.5
Fig.11(red) 81 87 0.642 0.0489 3.92 29.2 33.8

Fig.11(yellow) 73 76 0.550 0.0455 3.75 26.1 30.4

Table 1: Timing statistics. For examples depicted in the result sec-
tion, we count the minimal and maximal number of nodes allocated
in our rh-adaptive simulation, together with the averaged time cost
(in milliseconds) spent in each step in Algorithm 1 per frame.

the redistribution of the Eulerian points, a small but highly curved
knot loop can be successfully reproduced which finalizes the knot-
ting process. To clearly show the dynamics of material points in
these cases, node insertion is solely based on the length tolerance
to control a bounded number of samplings.

5.4. Timing
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We roughly compare the per-
formance of our method with
a pure Lagrangian method in
terms of average time cost
(counted in second) per frame
with varying numbers of initial
sample points. As a comparison,
the pure Lagrangian method fol-
lows [ST07] and is also implemented in our numerical framework
with an implicit Euler integration. For fairness, we turn off the op-
tion for h-adaption in both methods. In each step, solving the lin-
earized equation still dominates the computational cost. As shown
in the inset, the time cost of our method is slightly larger than the

pure Lagrangian version, which is quite reasonable since the ex-
tended Eulerian coordinates will introduce more DoFs, and thus
the size of the system matrix is becoming larger. However, since
the additional DoFs for Eulerian coordinates only occupy a small
portion of the total size, it will not bring in too much overhead
especially when the linear solver is well scaled. Our current im-
plementation is not well optimized, and exploring multi-threading
or using a more sophisticated linear solver will definitely help to
greatly improve the run-time performance. Detailed statistics are
provided in Table 1.

6. Limitations and Future Works

Though being successful to generate realistic simulation, we should
note that we have made some approximation in our methods which
might lead to inaccuracy in some cases. If the external impulse is
violent, the reference mesh does have a chance to undergo intense
motions. In such circumstances, our approximated EoM might
cause some notable visual artifacts or severe energy dissipation.
Besides, friction is not considered in our current implementation
yet, which might fail to reproduce viscous dynamics like simulat-
ing interactions of rough materials, etc.

As for r-adaption, our prior to redistribute the sample points is
completely geometry-based. Although it often exhibits good con-
sistency with intensity distribution of physical field, there could be
considerable discrepancy when rod material is becoming quite in-
homogeneous. Therefore, how to model a more general, physics
oriented prior to move those material coordinates, or even take
account of posterior knowledge if groundtruth validation can be
known in advance to improve the accuracy of r-adaptive method
will be definitely an interesting and important future work.

Since having a stable and efficient h-adaption is much more chal-
lenging, our method could share similar shortcomings as previous
works. For example, tiny segments generated in the simulation are
simply merged for numerical conditioning, but this could be still
problematic especially when multiple stacked rod layers are slid-
ing towards each other, e.g. in yarn-level cloth simulations. While
such scenarios are not common in our experiments, integrating the
techniques of [SBRBO20] into our method is definitely an elegant
alternative to resolve the infinitely large stiffness.

Finally, incorporating Eulerian coordinates numerically leads to
more nonlinearity, degeneracy, poor conditioning, and thus great
challenges in both computational efficiency and robustness. We be-
lieve that there should be better numerical methods to solve Equa-
tion (15) or its simplified version. For instance, the augmented La-
grangian method is probably worth trying. The inspiring idea of
statics-dynamics separation in [SBRBO20] is also an interesting
direction to explore.
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Figure 11: Knot sliding. By initializing the rod shape via different knot curves (red, green, blue and yellow color for each) and dragging two
ends of the rod, our method can simulate the knotting process involving abundant bend, twist and contacts. Notice that when approaching
the last stage of simulation, due to our curvature driven r-adaption, the material points are pushed to concentrate in the middle of the rods,
where a small but sharply curved knot loop is successfully reproduced. The reference meshes are illustrated by the colored bar below each
figure, whose color indicates the local curvature magnitude with deeper color for a larger value.
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Appendix A: Discrete evaluation of energies

In this section, we will derive a discrete formula to calculate the
energies used for the Cosserat model. The derivation is exactly fol-
lowing [ST07], and we just intend to provide a quick reference here
for implementation purposes.

The continuous integral can be turned to summation over each
element by using piecewise linear basis functions and one Gaus-
sian quadrature. For the stretching potential Vs (Equation (5)), its
discrete calculation per segment ei can be written as

Vs,i =
1
2

ks(ui+1−ui)

(
||xi+1−xi||

ui+1−ui
−1
)2

.

As for rotational kinetic energy (see Equation (6)), it is related to
the angular velocity ωωω. With quaternion representation, each com-
ponent of angular velocity ωk along different directions is com-
puted as

ωk =
2
‖q‖2 (Bkq)T q̇,

where Bk ∈ R4×4 is a constant skew-symmetric matrix:

B1 =

(
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

)
, B2 =

(
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

)
, B3 =

(
0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
,

and the temporal derivate can be later discretized via finite differ-
ence method for time integration. Between two adjacent line seg-
ments, both material frame and angular velocity are regarded as
piecewise linear functions, and thus the rotational kinetic energy
per segment is calculated as:

Tr,i =
1
8
(ui−ui+1)

3

∑
k=1

Jkk

(
(Bk(qi +qi+1))

T (q̇i + q̇i+1)
)2

, (18)

where three entries of diagonal inertia tensor is J11 = J22 = ρπr2/4
and J33 = ρπr2/2 respectively. For twisting and bending, each
component of frame strain εk is computed similarly, with the tem-
poral derivative of q being replaced by its spatial derivative, namely

εk =
2
‖q‖2 (Bkq)T∇uq.

Having this formula, the discrete bending and twisting potential can
be computed via

Vb,i =
1
2
(ui+1−ui)

3

∑
k=1

Kkk

(
2
||qi||2

(Bk(qi +qi+1))
T qi+1−qi

li
− ε̄k

)2

,

where li = (ui+2− ui)/2. The diagonal stiffness K has entries of
K11 = K22 = Eπr2/4 and K33 = Gπr2/2, where E and G are stiff-
ness modulus which encodes the bending and torsional resistance
respectively.

Appendix B: Equation of Motion for qqq

Starting from the kinetic energy Tr (Equation (6)) and potential en-
ergies Vb (Equation (7)), the equation of motion for material frame
q can be similarly derived based on the Euler-Lagrange equation as

EoM(q) : Ṁq(q)q̇+Mq(q)q̈−
∂Tr

∂q
+

∂Vb
∂q

= τ, (19)

where τ is the external twisting torque and Mq(q) is the mass for
material frames. Given the discrete computation of Tr by Equa-
tion (18), the mass matrix is assembled as Mq,i = [1,1;1,1]⊗mq,i,
where the sub-block is written as

mq,i =
1
8
(ui−ui+1)

3

∑
k=1

Jkk (Bk(qi +qi+1))(Bk(qi +qi+1))
T .

(20)
For time integration, we adopt implicit Euler same as before and
drop some subtle terms for simplicity, and finally get

Mq(qn)
qn+1−qn−hq̇n

h2 +
∂Vb
∂q

(qn+1) = τ. (21)

This approximated EoM for q can be treated in the same way in the
velocity solving process, as demonstrated in Section 5.2.
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