SIGGRAPH ASIA 2019 BRISBANE

Material-adapted Refinable Basis Functions for Elasticity Simulation

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, Mathieu Desbrun

Zhejiang University, Caltech

Motivation

Inhomogeneity everywhere...

very

Homogenization (Coarse-graining)

• Fitting locally-homogeneous model

Lily Kharevych	Patrick Mullen Calt	Houman Owhadi ech	Mathieu Desbrun
Abstract We propose an approach for efficiently simula ande of non-homogeneous, non-isotropic mate ent developments in homogenization theory, a roduced to approximate a deformable object ma	ting elastic objects rials. Based on re- methodology is in- ade of arbitrary fine		
Data-Driven Finite E Desai Chen ¹ David I ¹ MIT CSAIL ² Di	Elements for W. Levin ¹² sney Research	Geometry ar Shinjiro Sueda ¹²³ ³ California Polytec	nd Material Design Wojciech Matusik ¹ hnic State University
		X	
Mechanical Characteriz	ation of Str	uctured Shee	et Materials

- Idea
 - "Average" the inhomogeneous potential functional from fine to coarse
- Limitations
 - Hard to encode general anisotropy for nonlinear problems
 - Limited ability to capture complex anisotropic behavior

Homogenization (Coarse-graining)

- Idea
 - Optimize coarse-to-fine
 "prediction" by adapting the bases
 to the inhomogeneity
- Limitations
 - Limited expressivity for elasticity
 - Not flexible enough to handle arbitrary coarse scale
 - Cost much to compute

• Construct local basis functions

SA2019.SIGGRAPH.ORG

How basis functions play a role

Choosing basis functions

- Global basis functions
 - ➢ Eigenfunctions (modal basis)

- Local basis functions
 - ► Low-order polynomial basis

Sparse optimization approach

• [Brandt and Hildebrandt 2017]

$$\mathbf{u}_{i} := \begin{cases} \arg\min_{\mathbf{u}} \ \mathbf{u}^{T}\mathbf{H}\mathbf{u} + \mu \|\mathbf{u}\|_{1} \\ \text{subject to } \mathbf{u}^{T}\mathbf{M}\mathbf{u} = 1 \text{ and } \forall j < i : \mathbf{u}^{T}\mathbf{M}\mathbf{u}_{j} = 0 \end{cases}$$

$$\stackrel{\circ}{\longrightarrow} \stackrel{\circ}{\longrightarrow} \stackrel{\circ}$$

MultiResolution Analysis (MRA)

Hierarchical orthogonal decomposition

$$\mathcal{V}^{k+1} = \mathcal{V}^k \oplus \mathcal{W}^k$$
 $\mathcal{V}^q = \mathcal{V}^1 \oplus \mathcal{W}^1 \oplus \cdots \oplus \mathcal{W}^{q-1}$

• Multiresolutional basis functions

MultiResolution Analysis (MRA)

- Multiresolutional upsampling q - 1 $u^{q}(x) = \sum v_{i}^{1}\varphi_{i}^{1}(x) + \sum w_{j}^{k}\psi_{j}^{k}(x)$ **Missing details** k=1**C**oarsest solution
- Stiffness matrix structure

$$\begin{bmatrix} A^{1} := L(\varphi^{1}, \varphi^{1}) & L(\varphi^{1}, \psi^{1}) & \dots & L(\varphi^{1}, \psi^{q-1}) \\ L(\psi^{1}, \varphi^{1}) & B^{1} := L(\psi^{1}, \psi^{1}) & \dots & L(\psi^{1}, \psi^{q-1}) \\ \vdots & \vdots & \ddots & \vdots \\ L(\psi^{q-1}, \varphi^{1}) & L(\psi^{q-1}, \psi^{1}) & \dots & B^{q-1} := L(\psi^{q-1}, \psi^{q-1}) \end{bmatrix}$$

Orthogonality

Why L_2 -orthogonality?

Clustered scale separation

SA2019.SIGGRAPH.ORG

Spatial locality

Besides, we want the basis functions to be locally supported

- to be able to capture local deformation
- to handle boundary conditions properly
- to sparsify the system matrix for computational efficiency

Construction for elasticity

Mesh hierarchy

- Loose requirement on mesh hierarchy...
 - Simplicial/polyhedral
 Nested/non-nested
 Subdivision/aggregation

Refinable basis functions

1

• ...as long as the associated basis functions are *refinable*

$$\forall k \in \{1, ..., q-1\}, \quad (\varphi_i^k) = \sum_{j=1}^{n_{k+1}} C_{ij}^k \varphi_j^{k+1}, \quad C^k \uparrow (\varphi_j^{k+1}) = \sum_{j=1}^{q_i^k} C_{ij}^k \varphi_j^{k+1}, \quad C^k \uparrow (\varphi_j^{k+1}) = \sum_{j=1}^{q_j^k} C_{ij}^k \varphi_j^{k+1}, \quad C^k \downarrow (\varphi_j^{k+1}) = \sum_{j=1}^{q_j^k} C_{ij}^k \varphi_j^{k+1}, \quad$$

 L_2 orthogonal by construction

• Refinement kernel W

$$\mathbf{C}^{k}\mathbf{W}^{k,T} = \mathbf{0} \xrightarrow[wavelet]{\text{parameterize}} \psi_{i}^{k} = \sum_{j=1}^{n_{k+1}} \mathbf{W}_{ij}^{k}\varphi_{j}^{k+1}$$

Matrix-valued extension

• Matrix-valued basis functions [Chen 2018]

For any
level k
$$\begin{aligned} \varphi_i^k : \Omega \to \mathbb{R}^{d \times d} \\ \text{Finest} \quad \varphi_i^q(x) = \begin{bmatrix} \bar{\varphi}_i(x) & 0 & 0 \\ 0 & \bar{\varphi}_i(x) & 0 \\ 0 & 0 & \bar{\varphi}_i(x) \end{bmatrix} \\ \end{aligned}$$
 Idea: provide sufficient DOFs to encode local anisotropy.

• Matrix dimensions

 $\mathbf{C}_{ij}^k, \mathbf{W}_{ij}^k \in \mathbb{R}^{3 \times 3}$

$$\mathbf{C}^{k} \in \mathbb{R}^{3n_{k} \times 3n_{k+1}}$$
$$\mathbf{W}^{k} \in \mathbb{R}^{(3n_{k+1} - 3n_{k}) \times 3n_{k+1}}$$

Material-adapted refinement

L-orthogonality

Ø

Enforce orthogonality w.r.t. metric $\boldsymbol{\mathcal{L}}$

$$\int_{\Omega} \varphi_i^k \mathcal{L} \psi_j^{k,T} = 0 \quad \forall i, j,$$

$$\mathbb{C}^k \mathbb{A}^{k+1} W^{k,T} = \mathbf{0}$$

SA2019.SIGGRAPH.ORG

Spatial locality

Enforce collocation with nonadapted local basis functions

 δ_{ii}

Variational formulation

Equivalent variational
$$\varphi_i = \operatorname*{arg\,min}_{\phi} \int_{\Omega} \phi \mathcal{L} \phi$$
 s.t. $\int_{\Omega} \phi \varphi_j = \delta_{ij} \forall j$.

[Refer to our paper for a proof]

 $\mathbb{C}^{k} = \arg\min \operatorname{Tr} \left[M \mathbb{A}^{k+1} M^{T} \right] \quad \text{s. t.} \quad M \operatorname{C}^{k,T} = \mathbb{I}_{3n_{k} \times 3n_{k}}.$ Discrete form M[A simple guadratic problem]

Close-formed
solution
$$\mathbb{C}^{k} = \mathbb{C}^{k,\dagger} \Big[\mathbb{I}_{3n_{k+1} \times 3n_{k+1}} - \mathbb{A}^{k+1} \mathbf{W}^{k,T} \left(\mathbb{B}^{k} \right)^{-1} \mathbf{W}^{k} \Big],$$
[Recursively applied for multilevel decomposition]
$$\mathbb{W}^{k} \mathbb{A}^{k+1} \mathbf{W}^{k,T}$$

[Recursively applied for multilevel decomposition]

Hierarchical adapted basis fcts

SA2019.SIGGRAPH.ORG

Hierarchical adapted basis fcts

Hierarchical adapted basis fcts & wavelets

Adapted wavelets

SA2019.SIGGRAPH.ORG

Basis truncation

- The coarser the level is, the larger support region basis functions will have, which slows down
 - Matrix factorization
 - Matrix multiplication
- Fast decay property allows for truncation of the basis functions
 - See our paper for details
- Besides, geometrical invariance should be preserved

translation
$$\forall j, \sum_{i} \mathbb{C}_{ij}^{k} = \mathbb{I}_{3\times 3},$$
 Infinitesimal $\forall j, \sum_{i} \mathbb{C}_{ij}^{k} [\bar{\mathbf{x}}_{i}^{k-1}]_{\times} = [\bar{\mathbf{x}}_{j}^{k}]_{\times},$

Multilevel solve

 Recall block diagonal stiffness matrix • Therefore, each level can be solved independently

Homogenization accuracy

SA2019.SIGGRAPH.ORG

Resolve geometric nonlinearity

• Rotation-strain warping [Huang 2011]

$$\hat{u}^{q} = \operatorname*{arg\,min}_{u} \int_{\Omega} \|\nabla u - RS(\nabla u^{q})\|_{F}^{2}$$

s.t. $S\hat{u}^{q} = 0$

 Cayley mapping to reduce over-estimation of rotation by exp

$$Cay(A) = (\mathbb{I}_{3\times 3} - A/2)^{-1} (\mathbb{I}_{3\times 3} + A/2)$$

Comparisons

SA2019.SIGGRAPH.ORG CONFERENCE 17-20 November 2019 - EXHIBITION 18-20 November 2019 - BCEC, Brisbane, AUSTRALIA

Comparisons

With [Chen 2018]

2D linear statics

SA2019.SIGGRAPH.ORG

3D linear dynamics

SA2019.SIGGRAPH.ORG

3D corotational dynamics

SA2019.SIGGRAPH.ORG

Complexity of precomputations

SA2019.SIGGRAPH.ORG

Stress homogenization

setting

Structure analysis

Tilling pattern

 $E(d) = 1/\operatorname{div}(dd^{T}) : (\mathbb{A}^{1})^{\dagger} : \operatorname{div}(dd^{T})$

Limitations and future work

- More accurate handling of geometric nonlinearity
- Push the efficiency to the limit
- Extend to general nonlinear problem
 - Analytically adapt the basis functions, or
 - Numerically adapt the basis via fast update
- Combined with CHARMS framework for local adaptation

Thank you

sa2019.siggraph.org