Material-adapted Refinable Basis Functions for Elasticity Simulation

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, Mathieu Desbrun

Zhejiang University, Caltech
Motivation

Inhomogeneity everywhere...

Simulating inhomogeneous material objects can be very challenging

- Large scales
- Poor condition

Homogenization!

Organs, compounds, metamaterials...
Homogenization (Coarse-graining)

• Fitting locally-homogeneous model

Numerical Coarsening of Inhomogeneous Elastic Materials
Lily Khareyevych, Patrick Mullen, Houman Owhadi, Mathieu Desbrun

Abstract
We propose an approach for efficiently simulating elastic objects made of non-homogeneous, non-isotropic materials. Based on recent developments in homogenization theory, a methodology is introduced to approximate a heterogeneous object made of arbitrary fine.

Data-Driven Finite Elements for Geometry and Material Design
Desai Chien¹, David I.W. Levin¹,², Shinjiro Sueda¹,², Wojciech Matusik³
¹MIT CSAIL, ²Disney Research, ³California Polytechnic State University

Mechanical Characterization of Structured Sheet Materials
CHRISTIAN SCHUMACHER, Disney Research and ETH Zurich
STEVE MARSHNER, Cornell University
MARKUS GROSS, Disney Research and ETH Zurich
BERNHARD THOMASZEWSKI, Université de Montréal

• Idea
 ➢ “Average” the inhomogeneous potential functional from fine to coarse

• Limitations
 ➢ Hard to encode general anisotropy for nonlinear problems
 ➢ Limited ability to capture complex anisotropic behavior
Homogenization (Coarse-graining)

- **Idea**
 - Optimize coarse-to-fine “prediction” by adapting the bases to the inhomogeneity

- **Limitations**
 - Limited expressivity for elasticity
 - Not flexible enough to handle arbitrary coarse scale
 - Cost much to compute
How basis functions play a role

PDE
\[\mathcal{L} : H \rightarrow H^* \]
linear
self-adjoint
positive-definite

Introduce test function
\[\forall v \in H \]

Weak form
\[L(u, v) := \int L(u) \cdot v \]

A set of basis fcts for testing
\[\{ \phi_i \}_i \]

Lax-Milgram theorem ensures the unique solution for any RHS

Linear Eqns
\[A_{ij} u_j = b_i \]
\[A_{ij} = L(\phi_i, \phi_j) \]
\[b_i = G(\phi_i) \]
Choosing basis functions

- Global basis functions
 - Eigenfunctions (modal basis)
 - Pros
 - Complete scale separation
 - Spectral convergence
 - Effective reduction
 - Cons
 - No associated spatial DoFs
 - Expensive to compute

- Local basis functions
 - Low-order polynomial basis
 - Pros
 - Simple, efficient and generalizable
 - Friendly to boundary conditions
 - Cons
 - Poor convergence for even homogeneous problem
 - Bad conditioning

Can we bridge two extremes?
Sparse optimization approach

• [Brandt and Hildebrandt 2017]

\[
\begin{align*}
\mathbf{u}_i & := \arg \min_{\mathbf{u}} \quad \mathbf{u}^T \mathbf{H} \mathbf{u} + \mu \| \mathbf{u} \|_1 \\
\text{subject to} \quad & \mathbf{u}^T \mathbf{M} \mathbf{u} = 1 \quad \text{and} \quad \forall j < i : \mathbf{u}^T \mathbf{M} \mathbf{u}_j = 0
\end{align*}
\]

• Complicated nonlinear optimization
• Not intuitive to control the locality
MultiResolution Analysis (MRA)

- Hierarchical orthogonal decomposition
 \[\mathcal{V}^{k+1} = \mathcal{V}^k \oplus \mathcal{W}^k \]
 \[\mathcal{V}^q = \mathcal{V}^1 \oplus \mathcal{W}^1 \oplus \ldots \oplus \mathcal{W}^{q-1} \]

- Multiresolutional basis functions
 \[\mathcal{V}^{k+1} = \text{span}(\varphi_{i}^{k+1}) \oplus \text{span}(\varphi_{i}^{k}) \oplus \text{span}(\psi_{j}^{k}) \]
 \[\forall i, j, \int \varphi_{i}^{k} \psi_{j}^{k} = 0 \]

Wavelets

Scaling functions
MultiResolution Analysis (MRA)

• Multiresolutional upsampling

\[u^q(x) = \sum_{i} v_i^1 \varphi_i^1(x) + \sum_{k=1}^{q-1} \sum_{j} w_j^k \psi_j^k(x) \]

• Stiffness matrix structure

\[
\begin{bmatrix}
A^1 := L(\varphi^1, \varphi^1) & L(\varphi^1, \psi^1) & \cdots & L(\varphi^1, \psi^{q-1}) \\
L(\psi^1, \varphi^1) & B^1 := L(\psi^1, \psi^1) & \cdots & L(\psi^1, \psi^{q-1}) \\
\vdots & \vdots & \ddots & \vdots \\
L(\psi^{q-1}, \varphi^1) & L(\psi^{q-1}, \psi^1) & \cdots & B^{q-1} := L(\psi^{q-1}, \psi^{q-1})
\end{bmatrix}
\]
Orthogonality

Why L_2-orthogonality?

Operator-orthogonal decomposition

\[
\begin{align*}
\mathcal{V}^{k+1} &= \mathcal{V}^k \oplus L \mathcal{W}^k \\
\text{span}(\varphi_i^{k+1}) &\quad \text{span}(\varphi_i^k) \quad \text{span}(\psi_j^k)
\end{align*}
\]

\[
\forall i, j, \int \varphi_i^k L \psi_j^k = 0
\]

Block diagonal stiffness matrix

\[
L = \begin{pmatrix}
A^1 & 0 & \cdots & 0 \\
0 & B^1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & B^{q-1}
\end{pmatrix}
\]

Clustered scale separation
Spatial locality

Besides, we want the basis functions to be locally supported

- to be able to capture local deformation
- to handle boundary conditions properly
- to sparsify the system matrix for computational efficiency
Construction for elasticity
Mesh hierarchy

- Loose requirement on mesh hierarchy...
 - Simplicial/polyhedral
 - Nested/non-nested
 - Subdivision/aggregation
Refinable basis functions

• ...as long as the associated basis functions are **refinable**

\[\forall k \in \{1, \ldots, q-1\}, \quad \varphi_i^k = \sum_{j=1}^{n_{k+1}} C_{ij}^k \varphi_j^{k+1}, \quad C_i^k \]

- Refinement kernel \(W \)

\[C^k W^k, T = 0 \]

\(L_2 \) orthogonal by construction
Matrix-valued extension

• Matrix-valued basis functions [Chen 2018]

For any level k

$$\phi_i^k : \Omega \rightarrow \mathbb{R}^{d \times d}$$

Finest level

$$\phi_i^q(x) = \begin{bmatrix} \bar{\phi}_i(x) & 0 & 0 \\ 0 & \bar{\phi}_i(x) & 0 \\ 0 & 0 & \bar{\phi}_i(x) \end{bmatrix}$$

Idea: provide sufficient DOFs to encode local anisotropy.

• Matrix dimensions

$$C_{ij}^k, W_{ij}^k \in \mathbb{R}^{3 \times 3}$$

$$C^k \in \mathbb{R}^{3n_k \times 3n_{k+1}}$$

$$W^k \in \mathbb{R}^{(3n_{k+1} - 3n_k) \times 3n_{k+1}}$$
Material-adapted refinement

Material **blind** MR bases

$$\varphi_i^k = \sum_{j=1}^{n_{k+1}} C_{ij}^k \varphi_j^{k+1}$$

$$\psi_i^k = \sum_{j=1}^{n_{k+1}} W_{ij}^k \varphi_j^{k+1}$$

Bootstrapping

$$\varphi_i^q \equiv \varphi_i^q$$

Material **adapted** MR bases

$$\varphi_i^k = \sum_{j=1}^{n_{k+1}} C_{ij}^k \varphi_j^{k+1}$$

$$\psi_i^k = \sum_{j=1}^{n_{k+1}} W_{ij}^k \varphi_j^{k+1}$$

To be solved...
L-orthogonality

Enforce orthogonality w.r.t. metric \mathcal{L}

$$\int_{\Omega} \phi_i^k \mathcal{L} \psi_j^k, T = 0 \quad \forall i, j,$$

$$C^k A^{k+1} W^k, T = 0$$
Spatial locality

Enforce collocation with non-adapted local basis functions

\[\int_{\Omega} \varphi_{i}^{k} \varphi_{j}^{k} = \delta_{ij} \quad \forall i, j, \]

\[C_{k}^{k}, T = I \]
Variational formulation

Equivalent variational formulation

\[\varphi_i = \arg \min_{\phi} \int_\Omega \phi \mathcal{L} \phi \quad \text{s.t.} \quad \int_\Omega \phi \varphi_j = \delta_{ij} \quad \forall j. \]

[Refer to our paper for a proof]

Discrete form

\[C^k = \arg \min_M \text{Tr}[MA^{k+1}M^T] \quad \text{s.t.} \quad MC^{k,T} = I_{3n_k \times 3n_k}. \]

[A simple quadratic problem]

Close-formed solution

\[C^k = C^{k, \dagger} \left[I_{3n_{k+1} \times 3n_{k+1}} - A^{k+1} W^{k,T} \left(B^k \right)^{-1} W^k \right], \]

[Recursively applied for multilevel decomposition]
Hierarchical adapted basis fcts
Hierarchical adapted basis fcts
Hierarchical adapted basis fcts & wavelets
Spectrum and conditioning

Bilinear

Dirac

Eigen ranges

condition number

level

coarser

finer
Basis truncation

• The coarser the level is, the larger support region basis functions will have, which slows down
 • Matrix factorization
 • Matrix multiplication

• Fast decay property allows for truncation of the basis functions
 • See our paper for details

• Besides, geometrical invariance should be preserved

\[
\forall j, \sum_i C^k_{ij} = I_{3\times3},
\]

translation

\[
\forall j, \sum_i C^k_{ij} [\bar{x}_i^{k-1}]_x = [\bar{x}_j^k]_x,
\]

Infinitesimal rotation
Multilevel solve

- Recall block diagonal stiffness matrix

\[
L = \begin{pmatrix}
A^1 & 0 & \cdots & 0 \\
0 & B^1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix}
\]

- Therefore, each level can be solved independently

\[
A^q u^q = g^q
\]

\[
B^k w^k = W^k g^{k+1} \quad \text{for } q-1 \geq k \geq 1
\]

\[
A^1 v^1 = g^1
\]

- Decompose and solve in parallel
- Assemble solutions
- For coarse-graining

\[
u^q = \Phi^1, T v^1 + \sum_{k=1}^{q-1} \Psi_k, T w^k
\]
Homogenization accuracy
Resolve geometric nonlinearity

• Rotation-strain warping [Huang 2011]

\[\hat{u}^q = \arg \min_u \int_{\Omega} \| \nabla u - \text{RS}(\nabla u^q) \|^2_F \]

s. t. \(S\hat{u}^q = 0 \)

• Cayley mapping to reduce over-estimation of rotation by \(\exp \)

\[\text{Cay}(A) = (\mathbb{I}_{3\times3} - A/2)^{-1}(\mathbb{I}_{3\times3} + A/2) \]
Results
Comparisons

With [Nesme et al. 2009]
Element-wise diagonal matrix-valued basis functions

Both methods have only limited expressivity for complex anisotropic deformation.

With [Kharevych et al. 2009]
Regress elastic material tensor to encode anisotropy
Comparisons

With [Chen 2018]

(a) CR groundtruth (b) our method (c) [Chen et al. 2018]

Cannot handle aggressive coarsening well

Cannot adapt to boundary conditions
2D linear statics
3D linear dynamics

Fine:
T: 20096
V: 5120

Coarse:
T: 2512
V: 904
3D corotational dynamics

Fine:
T: 20096
V: 5120

Coarse:
T: 2512
V: 904
Complexity of precomputations

$O(n_q \log^{2d+1} n_q)$ \cite{Owhadi2017}
Stress homogenization

setting

composite material fine (64 × 64) coarse (1 × 1)
Structure analysis

\[E(d) = 1/\text{div}(dd^T) : (A^1)^\dagger : \text{div}(dd^T) \]
Limitations and future work

• More accurate handling of geometric non-linearity
• Push the efficiency to the limit
• Extend to general nonlinear problem
 • Analytically adapt the basis functions, or
 • Numerically adapt the basis via fast update
• Combined with CHARMS framework for local adaptation
Thank you

Q&A

sa2019.siggraph.org