Multiscale Cholesky Preconditioning for Ill-conditioned Problems

JIONG CHEN, State Key Lab of CAD&CG, Zhejiang University / Inria
FLORIAN SCHAFER, California Institute of Technology

JIN HUANG, State Key Lab of CAD&CG, Zhejiang University
MATHIEU DESBRUN, Inria / Ecole Polytechnique / Caltech

stres:

I “SIGGRAPH

I |

input mesh

SN

20

T ZaN

2
%a&.é\

Ours AMGCL Trilinos

¢ SR ! ! time (s), !
S OV fine-to-coarse discretization 0 200 400 600

Fig. 1. Multiscale Cholesky preconditioning. Given an unstructured Delaunay mesh (left), our method generates a hierarchy of discretizations (middle) to
reorder the 816k degrees of freedom and derive a sparsity pattern from which we can efficiently compute a zero fill-in incomplete Cholesky (IC) factorization of,
e.g., an elastic stiffness matrix for finite element analysis (right, top). The resulting factorization can be used as a preconditioner for an iterative Preconditioned
Conjugate Gradient solver, outperforming (even on this homogeneous case) existing highly-optimized algebraic multigrid preconditioners which typically
exhibit slow convergence for ill-conditioned large-scale systems (right, bottom), and without requiring the large amount of memory that direct solvers consume.

Many computer graphics applications boil down to solving sparse systems
of linear equations. While the current arsenal of numerical solvers available
in various specialized libraries and for different computer architectures often
allow efficient and scalable solutions to image processing, modeling and
simulation applications, an increasing number of graphics problems face
large-scale and ill-conditioned sparse linear systems — a numerical challenge
which typically chokes both direct factorizations (due to high memory re-
quirements) and iterative solvers (because of slow convergence). We propose
a novel approach to the efficient preconditioning of such problems which
often emerge from the discretization over unstructured meshes of partial
differential equations with heterogeneous and anisotropic coefficients. Our
numerical approach consists in simply performing a fine-to-coarse ordering
and a multiscale sparsity pattern of the degrees of freedom, using which
we apply an incomplete Cholesky factorization. By further leveraging su-
pernodes for cache coherence, graph coloring to improve parallelism and
partial diagonal shifting to remedy negative pivots, we obtain a precondi-
tioner which, combined with a conjugate gradient solver, far exceeds the
performance of existing carefully-engineered libraries for graphics problems
involving bad mesh elements and/or high contrast of coefficients. We also
back the core concepts behind our simple solver with theoretical foundations
linking the recent method of operator-adapted wavelets used in numeri-
cal homogenization to the traditional Cholesky factorization of a matrix,

Authors’ addresses: J. Chen, J. Huang (corresponding author), State Key Lab of
CAD&CG, Zhejiang University, Hangzhou, China; F. Schifer, Computing + Math-
ematical Sciences, Caltech, Pasadena, USA; M. Desbrun, Inria Saclay, LIX/DIX, Institut
Polytechnique de Paris, Palaiseau, France; on leave from Caltech.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0730-0301/2021/8-ART81 $15.00

https://doi.org/10.1145/3450626.3459851

providing us with a clear bridge between incomplete Cholesky factorization
and multiscale analysis that we leverage numerically.

CCS Concepts: » Mathematics of computing — Solvers.

Additional Key Words and Phrases: Numerical solvers, preconditioned con-
jugate gradient, incomplete Cholesky decomposition, wavelets.

ACM Reference Format:

Jiong Chen, Florian Schifer, Jin Huang, and Mathieu Desbrun. 2021. Multi-
scale Cholesky Preconditioning for Ill-conditioned Problems. ACM Trans.
Graph. 40, 4, Article 81 (August 2021), 13 pages. https://doi.org/10.1145/
3450626.3459851

1 INTRODUCTION

With the rapid development of visual computing techniques and
computational hardware, the graphics community can tackle in-
creasingly complex problems arising from an ever-wider range of
applications through large-scale sparse linear algebra. While there is
a plethora of scalable numerical algorithms and optimized libraries
to offer efficient solutions to a large amount of graphics methods,
the situation is far more dire if one needs to solve very large ill-
conditioned systems as typically arising from the discretization of
high-contrast partial differential equations over unstructured grids:
direct factorizations are prohibitively demanding in terms of mem-
ory size, while iterative solvers exhibit very poor convergence rates.

In this paper, we propose a novel incomplete Cholesky precondi-
tioner for iteratively solving large-scale ill-conditioned linear sys-
tems typically generated by the discretization of high-contrast ma-
terials with unstructured meshes. Based on recent numerical ho-
mogenization techniques used in graphics and applied mathematics,
our method is conceptually simple, and our current implementa-
tion already offers orders of magnitude acceleration over optimized,
specialized libraries, while keeping the memory size linear in the
number of degrees of freedom.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:2 « Chen,). etal

1.1 Related work

Direct and iterative solvers. Linear solvers are often classified into
two categories, namely direct and iterative solvers. The former class
is typically based on Gaussian elimination, and includes LU factor-
ization and its symmetric variant, Cholesky factorization. Although
accurate and stable, these direct solvers do not scale well in terms of
both computational time and memory cost, and are thus only used
for small matrices or when several solves using a same matrix are
called for. Reuse or partial updating of Cholesky factorization to
speedup specific applications has also been proposed [Herholz et al.
2017; Herholz and Alexa 2018; Herholz and Sorkine-Hornung 2020].
As for the latter class, Krylov subspace approaches such as the pre-
conditioned conjugate gradient method are widely used. They can
be very efficient computationally with small memory requirements,
but their convergence properties depend heavily on the efficacy of
their preconditioner. Therefore, a lot of effort have been spent on the
design of efficient preconditioners to accelerate iterative solves. A
popular approach to design preconditioners for geometric problems
are so-called multigrid methods.

Multigrid methods. A key issue of iterative methods is their lack of
efficiency in globally approximating solutions through local updates
given by matrix-vector products. Multigrid methods remedy this
weakness by alternating between updates on different scales and
exchanging information across scales. Geometric multigrid method
(GMG) has been widely applied to accelerate solve for its simplicity
in hierarchical construction [Zhu et al. 2010]; however, for inhomo-
geneous problems the geometry-based prolongation and restriction
operators cannot properly capture the underlying anisotropy. Nu-
merically, this translates in each level not acting on a restricted range
of the operator spectrum, eventually leading to very poor conver-
gence. Algebraic multigrid methods (AMG) can often perform better
in practice. For Laplacian matrices on regular meshes in particular,
[Krishnan et al. 2013] proposed an AMG-style preconditioner, where
coarsening is iteratively done by collapsing weak connections be-
tween matrix coefficients. While this approach has very strong pre-
conditioning properties for matrices containing only non-positive
off-diagonal entries (a particular instance of M-matrices [Fiedler
and Ptak 1962)), its performance worsens dramatically otherwise,
for instance when the input matrix is the cotangent Laplacian or an
elastic stiffness matrix computed on an irregular mesh containing
obtuse angles. General AMG preconditioners, such as the smoothed
aggregation approach (used, e.g., in [Tamstorf et al. 2015]), are not
restricted to M-matrices, but they still struggle when faced with
strong anisotropy or high contrast materials: the restriction and
prolongation operators are known to lose their efficacy when high
contrast variations are present in the material coefficients [Alcouffe
et al. 1981; Yavneh 2006; Brandt et al. 2011].

Homogenization. A closely related problem in computational sci-
ence is numerical homogenization, i.e., the computation of coarse-
grained operators that capture the large scale behavior of the so-
lutions of a given PDE, while preserving its locality as reflected
in the sparsity of its matrix representation. For elliptic problems
with smooth coeflicients, one can represent the operator matrix in a
wavelet basis of sufficiently high order of vanishing moments. Gines

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

et al. [1998] apply Gaussian elimination to such a representation to
obtain a fast solver that can be seen as a direct analog of multigrid
methods. The seminal work of Mélqvist and Peterseim [2014] proved
that the so-called Local Orthogonal Decomposition (LOD) achieves
near-optimal coarse graining of general second order elliptic op-
erators. Kornhuber et al. [2018] elegantly re-express these results
by relating them to the convergence theory of additive Schwarz
methods. By casting the design of prolongation operators as a sta-
tistical inference problem, Owhadi et al. [2017; 2019] introduce the
concept of gamblets, a class of operator-adapted wavelets that can
be interpreted as a multiscale version of LOD which can be com-
puted in near-linear computational complexity resulting in a fast
solver for general elliptic PDE. An interesting relationship between
gamblets and Gaussian elimination was pointed out in Schéfer et al.
[2021], providing a simpler construction of gamblets via Cholesky
factorization with improved asymptotic complexity. Gamblets were
also used in computer animation by [Chen et al. 2019] to design
material-adapted, refinable basis functions and associated wavelets
to offer efficient coarse-graining of elastic objects made of highly
heterogeneous materials. Due to its ability to construct space- and
eigenspace-localized functional spaces, this recent approach ex-
hibits far improved homogenization properties compared to the
long line of work on model reduction in animation [Nesme et al.
2009; Kharevych et al. 2009; Torres et al. 2014; Chen et al. 2017, 2018],
allowing for runtime simulations on very coarse resolution grids
that still capture the correct physical behavior. However, the initial
construction of their basis functions and wavelets was particularly
compute- and memory-intensive (even if matching the best known
computational complexity), prompting the authors to lament the
inability to use their approach to offer a multiscale preconditioner
that can boost the efficiency of elasticity simulation. Note that this
is, in fact, a common issue with reduction methods: they are often
too slow to be useful in applications demanding rapid updates.

1.2 Overview

In this paper, we propose a preconditioner and its practical imple-
mentation to efficiently solve sparse, large-scale and ill-conditioned
linear systems. Our approach has its roots in the recent work of
Schéfer et al. [2021] which showed that after a specific change of ba-
sis, the Cholesky factor of any discretized elliptic integral operator
is sparse up to exponentially small errors. As noted in their Section
6.2, this result extends to differential operators, generalizing closely-
related homogenization and multiresolution concepts [Schroder
et al. 1978; Gines et al. 1998; Owhadi and Scovel 2019] and enabling
the implementation of fast solvers based on incomplete Cholesky
factorization. However, being focused on integral equations, they
do not develop this idea further, and in particular do not provide
a practical implementation. We build upon their work by relating
Cholesky factorization to the construction of basis functions adapted
to a given differential operator recently described in [Chen et al.
2019]. As a result, we offer a much faster approach to construct
the hierarchy of operator-adapted wavelets than the original algo-
rithmic evaluation. We also devise a practical preconditioner for
sparse linear systems that is based on an incomplete Cholesky de-
composition with a specific fine-to-coarse multiscale reordering of
the matrix rows and columns and an adjustable sparsity pattern.

In order to offer peak computational performance, we further pro-
pose a supernodal implementation to maximize the utilization of
level-3 BLAS routines, use a multicolored ordering to exploit shared
memory parallelism and formulate an efficient way to deal with
non-positive pivots. Finally, we use our incomplete Cholesky fac-
torization as a preconditioner for conjugate gradient and apply the
resulting solver to typical linear algebra problems arising in graphics
applications. Compared to optimized algebraic multigrid libraries,
our solver exhibits an acceleration of several orders of magnitude
in solving inhomogeneous PDEs over irregular meshes; moreover,
its memory usage is linear in the size of the linear system, in sharp
contrast to the superlinear memory consumption of direct solvers.
Compared to the work of [Schéfer et al. 2021], we offer for the first
time a concrete implementation confirming the numerical superi-
ority of this homogenization-based approach to preconditioning;
we further observe that a multiscale ordering (i.e., the use of “lazy
wavelets”) outperforms averaging based approaches on problems
with high contrast even in cases not covered by their theoretical
foundations, since the former is more resilient to the loss of positive
definiteness during the factorization.

Outline. In Sec. 2, we spell out the relationship between Cholesky
factorization and operator-adapted wavelets in detail, thus estab-
lishing the mathematical foundations of our approach originally
proposed in [Schéfer et al. 2021]; readers purely interested in im-
plementation aspects can safely skip this part. In Sec. 3, we provide
our algorithms to construct an incomplete Cholesky preconditioner
through a specific choice of multiscale reordering and sparsity pat-
tern, as well as important technical extensions to improve its prac-
tical performance. We then provide in Sec. 4 a series of numerical
examples to demonstrate the efficiency and accuracy of a PCG solver
using our preconditioner, and present concrete comparisons with
current highly-optimized solvers, exhibiting several orders of mag-
nitude of improvement in computational time using only a memory
size proportional to the number of degrees of freedom.

2 CHOLESKY-BASED OPERATOR-ADAPTED WAVELETS

Our new preconditioner has its theoretical roots in a homogeniza-
tion approach based on operator-adapted wavelets. From a positive-
definite stiffness matrix computed via a fine grid, the original ap-
proach of [Budninskiy et al. 2019; Chen et al. 2019] proposes a
variational construction to compute a hierarchy of refinable basis
functions best adapted to a given operator L for scalar- and vector-
valued PDEs. Equipped with these resulting nested functional spaces,
a Galerkin projection is performed to re-express the stiffness matrix,
from which a solution is efficiently found by solving small, well-
conditioned and independent linear systems corresponding to the
various levels of the hierarchy. In contrast, our approach bypasses
this sequential construction, directly generating the hierarchy af-
ter a basis transformation. As we show in this section, this new
interpretation is theoretically equivalent to previous methods, but
far simpler to implement since there is no need to explicitly con-
struct the adapted basis refinement, wavelets and associated system
matrices in a fine to coarse fashion: all these operators can be ex-
tracted or expressed via sub-blocks of the resulting factors. In order
to motivate our practical approach, we first review the concept of

Multiscale Cholesky Preconditioning for lll-conditioned Problems « 81:3

operator-adapted wavelets, before explaining its fundamental link
to the famous Cholesky factorization.

2.1 Recap of operator-adapted wavelets

Given a partial differential equation Lu = g, the usual Galerkin
approach defines a set of basis functions forming a finite dimensional
functional space V, then discretizes the equation by assuming that
its solution lies in V, leading to a linear system of the form Au=g.
In order to better capture the multiscale nature of many physical
phenomena, the wavelet-Galerkin approach further decomposes the
whole functional space into a series of g nested subspaces {V*} kel..q
where V9 = V is the original finest space, that is,

VicVic.cvilcyi=v.

We call the subspace ‘W¥ the complement of V¥ in V¥+1 in the L,
sense, thus satisfying

Yl pkgayk k=1.4-1, (1)
where V¥ is spanned by nj basis functions (plk, i=1,..,ng and Wk is
spanned by g = ny1—ny wavelets 1,//5C Jj=1,.., n. The basis functions
and wavelets are therefore Ly-orthogonal by definition, implying
fQ (pllC l//f dx = 0. We thus get a multiscale decomposition of the orig-
inal, fine functional space, where, hopefully, each level captures a
certain range of spectrum. However, as soon as one uses spatial
grids that are not regular or if the PDE involves heterogeneous
and anisotropic coefficients, this general wavelet approach offers
little to no improvement: it fails to properly separate the multiscale
structure of the solution space [Sudarshan 2005].

If one wants to construct a multiscale decomposition which will
lead to a discrete block-diagonal version A of the operator in order
to facilitate the resulting numerical solve, the subspaces should be
instead adapted to the differential operator £ itself: only then can
the decomposition leverage the spectral properties of the opera-
tor. So a series of recent works [Owhadi 2017; Owhadi and Scovel
2019] proposed to reformulate the orthogonal decomposition using

operator-adapted subspaces V¥ and W that must satisfy

P =Pk g, WK k=1.,q9-1, @)
instead, with /9 =V and where orthogonality is no longer w.r.t.
the Ly-inner product of functions /Q fgdx but w.rt. the L-inner
product fQ fLgdx. Then, given any prescribed refinement relation-
+1)

ship M¥ (defining multiscale basis functions (plk =Y ke M{.‘lq)f

and its associated refinement kernel W* such that MKW*T=0 (and
defining multiscale wavelets 1//]k =y ke Wfl(pfﬂ), L-adapted basis
functions and wavelets spanning respectively V¥ and Wk are then
constructed via:

i Nk+1 £k Ni+1 ¢ &

_ +1 _ +1

o = Z Mgl ¥ = Z Wher ®)
I1=1 I=1

where M¥ is the new L-adapted refinement between scaling func-
tions of two adjacent levels. Exploiting the two conditions

(@) MFAR I WET =0, (b) MFMFT=T,
representing, respectively, (a) the L-orthogonality between adapted

basis functions and their wavelets and (b) the locality of adapted
basis functions, the adapted refinement is found in closed form as:

-1
MK = MET []I _AkHIWkT (Bk) Wk] ’ @)

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:4 « Chen,). etal

where MK = (MKM5T)~IMK is the (left) Moore-Penrose pseu-
doinverse and BX =WKAKWX T The stiffness matrix of level k+1
can then be decomposed into two L-orthogonal parts, with Ak
for the stiffness matrix of level-k adapted basis functions (with
Afj = /Q «prqpkdx) and B¥ for the stiffness matrix of the associ-
ated wavelets (with ijz /Q qﬁf.&/)?dx). Starting from the finest
level g, the adapted hierarchy can thus be constructed by sequen-
tially applying Eq. (4), with which the adapted basis functions,
wavelets and stiffness matrices on each level are assembled. The
resulting stiffness matrix is now block-diagonal by construction,
with A:diag(Bq_l, .., B2 B, AI). Details regarding sparsification
through thresholding and invariance enforcement through normal-
ization can be found in [Chen et al. 2019].

2.2 Cholesky-based reformulation

While the theoretical time complexity of adapted hierarchical con-
struction is O(nqlog2d+1 ng) [Owhadi and Scovel 2019], the actual
implementation presented in [Chen et al. 2019] involves intensive
linear algebra operations throughout the sequential construction
based on Eq. (4) with little opportunity for massive parallelization,
thus putting a very large constant in front of the time complexity.
In this section, we show that one can reformulate the construction
of operator-adapted wavelets via Cholesky factorization.

Schur-inspired factorization. Given a square matrix A whose asso-
ciated row/column indices can be classified into two disjoint sets f
(for fine) and c (for coarse) with size(A) =|f| + |c| , the crucial link
connecting operator-adapted wavelet and Cholesky factorization
has its roots in the following factorization

A A I 0\ (A 0 T AflA)
ff fc | = _ ff B fFOc | . (5)
1
(Acf ACC) (AcfAfF]I) (0 Ac _AcfAﬁ‘lAFc) (0 I
—_— - —_—
A L D LT

That is, the original matrix A can be decomposed as the product of a

lower triangular matrix L, a block-diagonal matrix D and an upper
triangular matrix LT, where one recognizes the Schur complement
of A in the middle matrix. By multiplying A on the left by the inverse
L and on the right by the inverse of LT, we thus block diagonalize
it, achieving the same effect as what adapted basis functions and
wavelets have done for the operator £ in the previous section. Note
that the inverse of L has a simple form which will be useful later on:

- I 0
L_l = (-1) . (6)
_AcfAff I

Cholesky factorization. Now let’s use the Schur factorization de-
scribed above to a specific matrix, defined as:
. wk
A =PARMIPT, with P= (Mk’T) , @)
One recognizes the L-adapted stiffness matrix AK*! of level k+1
on which we performed a specific basis transform based on the
refinement kernel W* and the pseudo-inverse MKT. From Eq. (5),
we need to multiply this newly-assembled matrix on the left by L~
and on the right by its transpose in order to diagonalize it. However,
we note through simple calculation that:

-1 I o\ [wk wk
L™'p= Mkt akawkT (wk gkawkTy 1| (vt | = |kt]

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

S
material
level 0 level 1 level 2 level 3
Fig. 2. Adapted basis functions. The multilevel Cholesky approach results
in an equivalent hierarchy as [Chen et al. 2019], with L-adapted basis
functions of decreasing spatial scale from coarsest to finest levels.

Therefore, diagonalizing A1 after a basis transform using P results
in diag(Bk , A%)_If the matrix D in Eq. (5) is further decomposed as

= (L o)([LT o
P=1o Ec)(o EZ) ®
—_—
L L7
then the Cholesky factorization of PAK*!PT =LLT must thus satisfy:
L=LL= A if—li io) (9)
cfFf c

because of Egs. (5) and (8). Hence, from the Cholesky factor L of
PAKIPT we can directly extract A¥ and B¥ through:

k 1T kK_17 77T
AR =L LI, B*=L.Ll. (10)

Note finally that the term —AcfA;]} of L1 can be computed through
partial back-substitution: from the non-diagonal part ACfA;]l L¢ of
the Cholesky factor L, a simple back substitution on the top diagonal
part will get rid of the term if. As a consequence, computing a
Cholesky decomposition of AK+1 after a basis transform using P is

equivalent to one level of coarsening in [Chen et al. 2019].

2.3 Multilevel Cholesky

Although we limited our exposition thus far to a single coarsening

from a level k+1 and a coarser level k, the method can be seamlessly

extended to a multilevel construction with a single Cholesky fac-
torization, from which we directly extract the multiscale hierarchy.

To achieve this goal, all the finest DoFs used to compute the initial

stiffness matrix need to be labeled as multi-

ple nested index sets to form a coarse to fine £2
hierarchy. Let ¢! be the index set denoting

1
the DoFs of the coarsest scale, and c? the f
index set of all DoFs of the finest scale, we c!
need to construct nested index sets such that
1 2

¢’ c ¢® C ... € ¢4, which can be achieved through farthest point
sampling for instance (or through regular subsampling for regular
grids, see inset). By defining £k = ck+1\ ¢k (where “\” indicates set
difference), all DoFs are thus rearranged as a sequence of unrepeated
indices through

cl=f1Tu. . ufluch

N
wia!
A4 = -
; !
- oMb A
S~— S~— ~——
P4 peT L4 LeT

Fig. 3. Multiresolution structure in Cholesky factorization.

Based on this choice of fine-to-coarse hierarchy, we can assemble a
transformation matrix P expressed as
w1
wWa2

pi= . | (11)

where each row of W encodes the coefficients of basis averaging
from nodes in c? to construct the wavelet on one of the nodes in f' k,
and M%T for the last level DoFs c'. With this global transformation
matrix, the Cholesky factorization of the fine stiffness matrix A9
can be done once as
A7 = P9 A9PPT = LIL2T, (12)

where L9 is the Cholesky factor on the finest level, and factors for
all other coarser levels can be extracted from the lower bottom part
of L9, see Fig. 3. Notice that the ordering within levels has been
arbitrary until now. Yet, adjusting inter-level ordering is very useful
to reduce fill-ins [Amestoy et al. 1996] or improve parallelism via
multicolored balancing, as we will exploit in practice in Sec. 3.

Once AY has been factorized, we can solve the linear equation
A%uf = g1 for any right-hand inputs g4 to get a solution via two
back-substitutions; and using the link between Cholesky factoriza-
tion and operator-adapted wavelets, we can also directly extract the
hierarchy of L-adapted basis functions and/or wavelets, along with
the corresponding block-diagonal stiffness matrix.

2.4 Discussion

The link between Cholesky factorization and operator-adapted
wavelets allows us to map the construction of homogenized basis
functions which share both spatial and eigenspatial locality [Chen
et al. 2019] to the classical Cholesky decomposition, and identifies
exactly how all the ingredients of the operator-adapted wavelet
approach can be extracted from a Cholesky factor. Additionally, it
provides a fine-to-coarse flavor to this well-known construction.
But this link, identified and exploited for dense matrices in [Schafer
et al. 2021], opens up a powerful computational basis for a radically
different way to approach wavelet-based solvers: we can now effi-
ciently construct an approximate multiresolution analysis of a given
sparse, symmetric, and positive-definite stiffness matrix through an
incomplete Cholesky (IC) factorization, a much friendlier algorithm
in terms of execution time and memory cost. By computing the
sparsity pattern based on the overlap of basis functions from vari-
ous levels instead of through thresholding to avoid branching, we
can significantly accelerate the practical construction as it amounts
to stopping the recursive evaluation when the accuracy is good
enough. Moreover, we can benefit from a number of computational
mechanisms particularly appropriate to perform IC factorization to
further improve the wall-clock time: from red-black coloring to al-
low for parallelism, to the left-looking variant of IC to increase data
reuse, to the grouping of columns with identical non-zero structures
(supernodes) to leverage highly-optimized level-2 and level-3 BLAS
routines, there exists a plethora of ways to increase the performance
of sparse IC. Overall, the new construction will be able to coalesce
memory access patterns and increasing computational intensity so
as to minimize memory access and “squeeze” as much computations
out of each access to a matrix element.

Multiscale Cholesky Preconditioning for lll-conditioned Problems « 81:5

coarsest

fine coarse coarser

Fig. 4. Geometric structure of hierarchy. The maximin ordering is gener-
ated by sequentially selecting the farthest DoF from already-selected ones.

3 MULTISCALE INCOMPLETE CHOLESKY

The most straightforward instantiation of the material presented
in Section 2 is obtained by using so-called “lazy wavelets”, argued
in [Chen et al. 2019; Budninskiy et al. 2019] to be most suitable
for graphics given its simplest refinement stencil (they referred
to it as “Dirac refinement”). We also adopt this choice here as the
transformation matrix P4 for this refinement ends up being a mere
reordering of the degrees of freedom. One can then perform a specific
incomplete Cholesky factorization by the following procedure:

@ We reorder the n degrees of freedom of the initial fine stiffness
matrix, such that for all k <n, the last k degrees of freedom are as
far from one another as possible; the smallest distance between
two such degrees of freedom is denoted as #.

@ For p > 1, we construct a sparsity pattern S, € nxn for the
IC factors that contains non-zero elements (i, j) with i > j for
which the distance between the i-th and j-th degree of freedom
is smaller than the minimum of p#; and p¢;.

® We then compute the zero-fill-in Cholesky factorization L, of the
original stiffness matrix A, ignoring all fill-in occurring outside
of the chosen sparsity pattern S,.

The result of this simple and efficient procedure will directly form
a preconditioner to be used with, e.g., a conjugate gradient solver.
Note that our approach does not use the typical sparsity strategies
such as IC(n) based on the initial sparsity structure of the input
matrix or thresholding of matrix coefficients: leveraging the multi-
scale ordering and its implied interaction between basis function
supports directly distributes fill-ins for effective coarse-graining and
conditioning improvement. Moreover, it can then be reused for any
solve on the same initial mesh, and according to our tests that we
will report in Sec. 4, it already outperforms previous preconditioners
in terms of overall efficiency. We now describe the algorithmic steps
of our multiscale IC factorization in detail.

3.1 Step 1: Multiscale ordering

The ordering of all degrees of freedom used by our method is ob-
tained by reversing the maximin ordering [Schéfer et al. 2021; Guin-
ness 2018] that is sequentially generated through farthest point
sampling, i.e., the next index iy selected is the one satisfying:

ip == argmax - min _dist(x;, xj), (13)
i€CO\{iy,oipr } JE{itrmmnito1}

= [ik
where dist(., .) measures distances (and geodesic distances if a curved

domain is used). The maximin ordering can be computed in complex-
ity O(nlog? n) by using [Schifer et al. 2021, Alg. 4.1]; alternatively,

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:6 « Chen,). etal

it can be efficiently approximated by using the farthest-sampling
procedure described in Alg. 2, which we use in our implementa-
tion. Once reversed, the resulting ordering defines an implicit fine-
to-coarse multiresolution basis transformation or “lazy wavelet”:
after choosing an arbitrary h € (0,1), a level can be defined by
the set of indices with a value of ¢; (defined in Eq. 13) within the
same log factor base h, i.e., the [-th level corresponds to the indices
{ik logy, () e[l 1+ 1)}, see [Schifer et al. 2021, Fig. 3.5] for de-
tails. If the spatial distribution in R? of the n degrees of freedom is
quite uniform, one can just pick the first [n—n/ 2dj consecutive in-
dices of the reversed maximin ordering, then the next [n/ 29_p/4d|
ones, etc, to construct a fine-to-coarse hierarchy of the domain.

3.2 Step 2: Sparsity pattern

Following [Schéfer et al. 2020, 2021], we also use a geometric crite-
rion to determine the sparsity pattern of our factorization, i.e., the
set of non-zero elements allowed in the Cholesky factor. For a given
parameter p > 1, the sparsity pattern S, is defined through:

Sp :={(i,j) € CTx C?| dist(xi, xj) < pmin(;,¢;)}, (14)

see inset. Here, the parameter p allows
us to change the trade-off between size
of the sparsity pattern and quality of
the preconditioner: forcing a sparser
Cholesky factor will reduce the com-
putational time needed to perform the
incomplete factorization, but decrease
the quality of its homogenization prop-
erties. In our implementation, the length scales of all nodes within
the same level are uniformly specified as the average spacing be-
tween these in-level points, roughly estimated based on the volume
of domain and the number of samples on a level. The covering re-
gion of each node will then grow with p at the same speed as the
estimated support of their adapted wavelets. To avoid unnecessary
loss in the raw fill-ins of the input matrix, if a node’s estimated
basis scale is not large enough to cover all its neighbors, we slightly
expand the radius such that no adjacent fill-in is dropped. A similar
coarsening-aware length adaption was used in [Chen et al. 2019]
for wavelet sparsification, with the same key intuition that the basis
support is adapted to the scale of the level, as observed in Fig. 2.
The assembly of the sparsity pattern is highly parallelizable and can
be performed in near-linear complexity through fast range search
algorithms (our implementation uses k-d trees). Once computed, it
can be reused for any other homogenization task using the same
mesh. As illustrated in Fig. 5, the factor becomes denser as p in-
creases, but it also more accurately approximates the true stiffness
matrix. [Schifer et al. 2021, Thm. 6.1] shows that for elliptic partial
differential operators of order larger than half the spatial dimension
d of the problem, truncating the exact Cholesky factor to S, leads
to an error that decreases as O (log(n) exp(—Cp)) as p and/or n in-
crease. On the other hand, the number of nonzeros in the sparsity
pattern S, only grows as O(np?). While their rigorous results for
the Laplace operator in two or three dimensions require the use of
Haar (as opposed to lazy) wavelets, we do empirically observe the
same exponential accuracy of the approximation.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

density percentage LT ~ Allp/IAlE (LLT)"1-A"Y) p/IA™ IE |Au-gll2/Ilgl2

1T T 1 0 T T T1] 100 1 1 1 T T

100 |

T

< error |
error
error

T

|
>
T
|

~
T

percentage of fill-ins
S
I
|

=

oo | | | T [[
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
P P p P

Fig. 5. Sparsity pattern, error and factor density. For a Laplacian matrix
on a regular grid of size 16kx16k, the general fill-in distribution regarding p
is illustrated. Due to multiscale spatial supports of basis functions, coarser
levels (darker blue) are always denser due to their large supports. With p
increasing, errors of Cholesky approximation, inverse operator approxima-
tion, and solution approximation decay exponentially.

3.3 Step 3: Zero fill-in incomplete Cholesky factorization

Now that a prescribed sparsity pattern S, is provided that records
the position of fill-in elements based on the control parameter p, the
incomplete Cholesky (IC) factorization can directly be performed
according to Alg. 1. The factorization is done column by column from
left to right in a sequential order. Computationally, it mainly consists
of inner products between sparse rows (Alg. 1 Line 6), leading to an
asymptotic complexity reduced from O(n?) to O(np??) compared to
a full dense Cholesky factorization, where d is the spatial dimension
of the problem (see Fig. 6).

3D factorization

102 T T T T 1717
—A— p=25
—e— p=35 /

niNETg Lol Bl |
10° n 10 10° n 10
Fig. 6. Scalability. In 2D and 3D, our IC factorization time matches the
expected O(np®?) time complexity for a matrix size nxn and a sparsity
parameter p; the dashed line indicates a slope of 1 in this log-log plot.

2D factorization

10! | —A— p=7.0
—6— p=8.0

time (s)
T
T
\
Lol

10°

—_
(=]
©
i

FTTTTTT

3.4 Fast implementation

The main objective of this work (and its main difference with [Schéfer
et al. 2021]) being to apply our IC algorithm to derive a fast and
robust solver for huge, sparse linear problems, we discuss three
additional implementation details which significantly improve com-
putational efficiency on modern hardware. First, we use supernodes,
allowing us to re-express the factorization in terms of BLAS opera-
tions. Second, we apply a multicolored ordering which maximizes
the number of operations that can be performed in parallel. Third,
we propose a numerical procedure to apply if a non-positive pivot
is encountered that does not affect the preconditioning properties
of the resulting factorization significantly.

Supernodal implementation. Performing IC column by column
involves indirect addressing, slowing down the factorization of large
scale problems. A supernodal implementation is one of the most ef-
fective ways to improve cache coherence — and thus computational
performance. In essence, supernodal factorization just amounts to
a block-wise version of the column-by-column scheme: multiple
columns with similar non-zero structure (called supernodes) are
processed together. The crucial issue here is the efficient construc-
tion of supernodes (sets of DoFs that appear consecutively in the
elimination ordering) so that the columns belonging to each supern-
ode have almost the same sparsity pattern. In our implementation,
we tested two possible supernodal approaches.
The first one, which we will refer to as the
two-way supernodal approach, identifies the su-
pernodes through distance-based clustering:
for each level, if two nodes i and j satisfy
dist(x;, x5) < % min(4;, ;) then we cluster these P two-way”
two nodes into a same supernode. After identifying all supernodes
on each level, the sparsity pattern is finally modified to form dense
blocks, resulting in a supernodal sparsity pattern §p:

Sp={(Z,9)|FieI,3je T and (i) € Sp}.

Finally, in order to avoid inserting too many fill-ins that might
not pay off in terms of convergence acceleration, we set an upper
bound on the supernodal size (64 for all tests). With this supernodal
structure, the scalar product, scalar square root and scalar inversion
in Alg. 1 Line 6, Line 10 and Line 12 are respectively replaced by
matrix-matrix product, dense Cholesky factorization, lower- and
upper-triangular solves, using highly optimized BLAS routines (we
use the Intel MKL library). As a result, indirect addressing is limited
to the few supernodal columns and the ratio of FLOPS per memory
access increases, drastically reducing computational time for larger
values of p. While this approach is relatively easy to incorporate, we
can further improve performance and memory use by implementing
what we will refer to as the one-way supernodal approach, partially
inspired by the supernodes used in Cholmod [Davis and Hager 2009].
Instead of considering each rectangular block [T 1
(Z,9) as a dense block, our one-way supern- | | |
odal approach only fills dense subblocks of
columns: storing the upper triangular Cholesky
factor as a sparse matrix with a column-major ST —
layout, the one-way approach traverses all non- | ~”

empty supernodal blocks and fully fills a column iff there is at least
one nonzero fill-in in the raw sparsity S, for that column. All fill-ins
in each supernodal row can then be stored in a contiguous memory
block and each supernodal cell only needs to additionally record
how global column indices are mapped to local ones. While addi-
tional copies of memory blocks are needed to scatter the result of
BLAS matrix products during factorization, this one-way treatment
saves about half of the fill-ins needed by the two-way approach,
thus improving both efficiency and memory usage. Consequently,
this option is the recommended default choice in practice.

1.9)

—_

S40)) \

“one-way”

Multi-threading. Due to sparsity, supernodal columns without
dependency can be processed in parallel, which is often referred to
level scheduled parallelization. (Note that the term “level” here is
conceptually very different from the notion of “mesh level” used in

Multiscale Cholesky Preconditioning for lll-conditioned Problems « 81:7

multiscale representation.) To identify which nodes can be elimi-
nated in parallel, a direct acyclic graph is constructed based on the
supernodal sparsity pattern §p. In the symbolic stage of factoriza-
tion, parallelizable nodes are grouped level by level. Both numerical
factorization and substitution can now be run in parallel. For more
detailed explanations on multi-threaded Cholesky factorization,
see [Naumov 2012]. In practice, our parallelized algorithm scales
almost linearly in the size of the input matrix, see Fig. 6.

Multicolored ordering. To increase factorization time (s)
parallelism of nodes without altering - T T
the original multiscale structure we con- g |- -
structed, the ordering of supernodes are ¢ |~
adjusted individually within each scale * L \ L~
through a classical greedy multicoloring #Sthreads 10
algorithm: for each scale, the inner-level supernodes are aggregated
into multiple clusters according to their pre-assigned color, as long
as any two adjacent nodes have different colors. While classical
fill-reducing orderings such as nested dissection greatly limit the
use of multicolored orderings, our approach gives complete free-
dom on the ordering within each scale, resulting in a highly parallel
algorithm. The time cost of factorization changes with the number
of used threads, as depicted in the inset.

Fixing breakdowns. For strictly symmetric positive definite ma-
trices, a complete Cholesky factorization will never run into a non-
positive pivot. However, this is no longer true for IC as a possibly
large amount of fill-in elements are dropped. While there exist
classes of matrices where IC is guaranteed not to encounter neg-
ative pivots (M-matrices [Meijerink and van der Vorst 1977] and
H-matrices, also called generalized diagonal dominant matrices
[Scott and Tama 2014c] most notably), the vast majority of matrices
used in graphics problems, such as Laplacian matrices or elasticity
stiffness matrices computed on irregular grids, do not fall into one
of these particular classes. A few existing strategies can be applied
to remedy this issue of IC, the simplest instance being to add a
global diagonal shift matrix a I (« >0) and reboot the factorization
whenever a negative pivot is detected [Scott and Ttuma 2014b]. If it
fails again, « is further increased, until success. In practice, we find
that global diagonal shifts are not appropriate in our case as they
drastically reduce the efficacy of the preconditioner due its effect on
the spectrum of the factor. Instead, when we encounter a negative
pivot, we only add shifts to the diagonal entries of those columns
that affect the diagonal entry of the failed column. Only these diago-
nally modified columns as well as their descendant columns have to
be re-factorized, while the remaining factorized ones can be safely
left as they were—a idea similar to the partial updates from [Herholz
and Sorkine-Hornung 2020]. If other negative pivots are found later
on, the above procedure is repeated and each relevant column is
incrementally shifted by a factor of 27 ¢ until success, where p; is
the number of times we tried to modify column i to fix breakdowns.
Another known approach to reduce the number of reboots is to
apply a diagonal scaling to the matrix before factorization. To this
end, scaling factors such as the inverse of the diagonal elements or
the Ly-norm of rows have been investigated in the literature [Scott
and Ttma 2014a]. In our implementation, we prescale the matrix
by the inverse of the diagonal entries, and « is set to 1074,

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:8 « Chen,). etal

Input: SPD matrix A and sparsity pattern Sp.

Output: Incomplete Cholesky factor L such that A ~ LLT
1 place non-zeros of A into L according to Sp;

fori < 1tondo

2
3 for j — itondo

4 fork «— 1toi—1do

5 if (j, 1), (J, k), (i,k) € Sp then

6 | L) < LG i) = LG KL k)
7 end

8 end

9 end

10 L(i,i) « \/m,

11 for j «— i+1tondo

© || LG & LG D)/L(L)

13 end
1 end

Algorithm 1: Left-looking incomplete Cholesky factorization.

groundtruth
—+4— [Chen et al. 2019]

10 N = o
—E— Ours ey
<
Y
£
=
= 100 | B
=
=
2
ference mesh
Pk ﬂ‘vé‘
SR
1073 il Lol [
10° 10*
n

Fig. 7. Cholesky-based numerical coarsening. Compared to the hier-
archical approach of [Chen et al. 2019], a full Cholesky factorization can
significantly improve the computational time required to precompute all
the adapted basis functions and wavelets for a given operator: on this elastic
deformation example using a relatively small tetrahedral mesh of a hand,
two orders of magnitude improvement is already observed.

4 RESULTS AND DISCUSSION

In this section, we show that our multiscale Cholesky factoriza-
tion provides a much faster alternative to the level-by-level (sparsi-
fied or complete) construction of operator-adapted wavelets, and
that the multiscale IC version we introduced results in a precondi-
tioner which, once integrated in a preconditioned conjugate gradient
solver, drastically outperforms existing solvers for large-scale, ill-
conditioned problems, while using a memory size that is only linear
in the number of DoFs in contrast to direct solvers. Our algorithms
were implemented in C++, and our numerical tests were run on a
laptop with two 6-core 2.3GHz Intel® Xeon® E5-2630 CPUs with 128
Gb of RAM. In all comparisons, the convergence condition for PCG
is [|Ax = b||2/]1bll2 < 10712, a typical tolerance for most applications.

4.1 Applicablity

First, we quickly show a few applications of our Cholesky-based
wavelet construction. By switching between a full and an incomplete
factorization, our method can be customized to solve common tasks
arising in graphics applications.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

Fig. 8. Non-linear dynamics. The speedup obtained from solving a single
ill-conditioned system with our method eventually leads to significant
accelerations when applied to nonlinear elasticity simulation, involving
repeated linearizations and solves for time integration.

Operator-adapted wavelet construction with full Cholesky. The
equivalence between Cholesky factorization and the closed-form
approach to constructing an operator-adapted hierarchy of basis
functions and wavelets guarantees that they share the same abil-
ity when applied for effective coarsening. However, the original
sequential construction proposed in [Chen et al. 2019; Budninskiy
et al. 2019] becomes inefficient for large scale problems in terms
of both memory and computational time, and thus various strate-
gies to induce basis sparsification have to be applied. Unfortunately,
sparsification will inevitably hurt accuracy, and has very little effect
on memory requirements. Additionally, while these two methods
have the same asymptotic complexity, their effective complexity (i.e,
the magnitude of the constant in front of the asymptotic complexity)
is drastically different: the Cholesky approach offers a way to avoid
explicitly calculating and storing all relevant adapted operators,
which greatly optimizes the construction of the operator-adapted
hierarchy both in terms of computational time and in terms of
memory consumption. As demonstrated by Fig. 7 on a 3D elastic-
ity problem, the Cholesky factorization optimizes the performance
of the complete hierarchy construction by at least two orders of
magnitude of acceleration, even on rather small problems. Since a
complete Cholesky factorization is used, we can apply any known
permutation of columns and rows to reduce fill-ins, and we used the
approximate maximal degree (AMD) ordering within each level in
this case. The resulting benefit on performance allows our algorithm
to directly conduct coarse-graining of complex composite materials
with high contrast of materials for much larger models than previ-
ously reported. Note that even for aggressive sparsification in the
original construction of operator-adapted wavelets, direct Cholesky
factorization is still about one order of magnitude faster.

Solving linear and non-linear systems in graphics. Combining an
approximate multiscale solver with a conjugate gradient solver is
widely recognized as an efficient way to solve large scale problems
in graphics. Our multiscale incomplete Cholesky factorization in-
troduced in Sec. 3 can also be used for this purpose given its good
asymptotic accuracy for small p values (see Fig. 5). As a result,
many applications in computer graphics can benefit from this novel
preconditioning technique, as long as symmetric positive definite
matrices are involved. Here we discuss two concrete examples for
illustration: elasticity simulation and image processing.

o Fast elastic simulation. Non-linear elasticity simulation of inho-
mogeneous materials is notoriously difficult from a numerical
standpoint. Given that time integration usually involves repeat-
edly solving very large linearized ill-conditioned systems, precon-
ditioned iterative solvers are the only viable approach but they

-10°
T T T T T
—e— Our method —— AMGCL ‘

] 20
= g
> =2 >
5 e
o
L5
=
o
o
a

0.5 1 1.5 2 2.5

time (10* 5)
Fig. 9. Non-linear quasi-statics. An armadillo is stretched via lateral grav-
ity with a few nodes (marked in black) are fixed at their rest positions. A
trust-region nonlinear optimization is implemented to determine the direc-
tion and length for each step, involving a linear system solve using for our
IC preconditioner or AMGCL; timing of the first 20 iterations are plotted.

ax&ay input

1071

Fig. 10. Edge-preserving decomposition. Our method can also generate
edge-preserving multiscale decompositions of an image, which can be fur-
ther used for applications such as tone mapping, detail exaggeration, etc. All
these images presented here have a size of 1280x800, and use gradient-based
diffusion coefficient ax and ay, for two different diffusion times A.

suffer from slow convergence in practice, particularly for prob-
lems on unstructured grids or/and for heterogeneous materials.
Our preconditioner offers significant improvement in computa-
tional timings: for the non-linear (compressible neo-Hookean)
elastodynamic example in Fig. 8 for instance, we simulate a bird
model with 490k cells and 300k degree of freedoms, using two
different materials with a contrast ratio of Young’s moduli equal
to 10%. The simulation takes about 120 seconds to solve each
frame with an IC-preconditoned conjugate gradient solver, while
a typical AMG solver, e.g. AMGCL we used for later compar-
isons, is about 5 times slower on this example. Besides dynamics,
our preconditioner can also be used to accelerate quasi-statics:
in Fig. 9, we stretch an armadillo models with about 340k nodes
(thus over 1M degrees of freedom), for which each tetrahedron is
randomly assigned one of two neo-Hookean materials whose con-
trast between Young’s moduli is 10%. In each step of our Newton
descent to find the final shape, we project the neo-Hookean elas-
tic stiffness matrix to enforce semi-positive definiteness [Teran

Multiscale Cholesky Preconditioning for lll-conditioned Problems « 81:9

et al. 2005]. The linear solves of the Newton descent exhibit a 2.5x
speedup on average compared to AMGCL, with larger speed-ups
for smaller error tolerances.

o Image processing. Our method can also benefit image processing
tasks, or even video stream processing. For instance, a number
of approaches have been designed to compute edge-preserving
decompositions of images [Farbman et al. 2008; Fattal 2009; Paris
et al. 2015] in order to perform dynamic-range compression,
tone mapping, multiscale detail enhancement or edge-preserving
smoothing to cite a few common examples. One way to provide
such a scale-space decomposition is through inhomogeneous
diffusion [Perona and Malik 1990] at different scales, where the
diffusion coeflicients are based on the log illuminance of the input
image. Our method can process any number of different images
of the same size once our sparsity pattern has been precomputed.
We can produce hierarchical edge-preserving decompositions
by simply performing linear solves corresponding to an implicit
integration of the non-linear diffusion for various times A as
demonstrated in Fig. 10. In this case, our solver pays off compared
to multigrid methods because the multiscale dynamics of the
non-linear coefficients of the Laplacian prevent the traditional
coarsening methods from providing adequate homogenization.

4.2 Quantitative analysis of IC

We now focus on providing detailed evaluations of various aspects
of our preconditioner, to better understand when and how it excels.

Empirical choice of p. As the most important parameter in our
algorithm, p is responsible for balancing robustness, factorization
speed, and convergence. To be more specific, with an increase of
either the problem size n or the material contrast, the algorithm
tends to have more breakdowns when using too small a p as depicted
in Fig. 11, which can slow down the efficacy of our preconditioner.
However, slightly increasing p removes most breakdowns, and the
few remaining negative pivots can be effectively fixed via our partial
diagonal shifting strategy. For the sake of accuracy, the parameter
p should be selected as large as possible, but considering time and
storage complexity in p as well as the overall balance between
factorization and convergence, we suggest to pick p in the 6.5 to
8.5 range in 2D and 2.5 to 4.0 in 3D in practice, which leads to peak
performance across all the examples we tried.

#reboots as fct of p and contrasts
(for n=13k)

#reboots as fct of p and n
(for contrast=10%)

Fig. 11. Reboot frequency. For 2D elasticity, as the problem size n or mate-
rial contrast increases, too small a sparsity parameter p can lead to frequent
breakdowns (i.e., non-positive pivots) during incomplete factorizations, re-
quiring reboots using our partial diagonal shifting strategy. However, their
frequency drops to zero as long as p is chosen to be not too small.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:10 « Chen,]. etal

Table 1. Statistics. We provide timings (tactor) Of our zero fill-in incomplete Cholesky factorization for various examples in this paper, along with their spatial
dimension, number n of degrees of freedom, and sparsity parameter p. Precomputations involve sparsity pattern construction (tspars), supernode aggregation
and multicoloring (¢super) and level scheduling for parallelism (¢sched), Which are done once and for all for a given mesh. Note that nnz(A) (resp., nnz(L)) is the

number of non-zeros of the original operator A (resp., its IC factor L), while memory indicates the total amount of RAM used.

example | dim. n p nnz(A) nnz(L) tspars (5) | tsuper(S) | tsched (8) | ffactor () | memory
Poisson 2D | 5x10° | 7.5 | 3493289 226089245 5.434 17.81 1.04 4.175 1.69G
Poisson 2D | 1x10°% | 7.5 | 6992002 456876935 11.93 40.90 2.56 7.841 3.42G
Poisson 3D | 5x10° | 3.2 | 7246747 468544044 11.11 36.73 2.44 20.33 3.50G
Poisson 3D 1x10° | 3.2 | 14761198 | 980299947 26.06 83.82 6.05 42.94 7.32G
Elasticity | 2D | 5% 10° | 7.5 | 6984008 432016172 5.368 23.48 1.68 9.661 3.23G
Elasticity | 2D 1x10% | 7.5 | 13973156 | 871565600 11.75 55.12 4.26 22.09 6.52G
Elasticity | 3D 5%10° | 3.2 | 21813147 | 1225328286 13.70 58.76 5.42 83.67 9.14G
Elasticity | 3D 1x10° | 3.2 | 43327773 | 2527263530 28.45 116.7 12.3 171.9 18.85G

Statistics. In Table 1, we provide statistics for our IC precondi-
tioner, including the number of fill-ins collected from all supernodes.
We also include the wall clock times for the construction of the spar-
sity pattern (Sec. 3.2), the aggregation and coloring of supernodes
and the level scheduling for improved parallelism (Sec. 3.4), the
actual numerical factorization time, as well as the memory size.
Both time and storage costs are linear in the problem size n given
a specific p. Small symbolic precomputations are involved in con-
structing the sparsity pattern and scheduling; their time complexity
grows almost linearly with n, but they are reusable for any other
linear solves issued from the same mesh.

4.3 Comparisons with existing solvers

We compare computational costs of various linear solvers with our
approach. Note that we count the execution time of both our IC
factorization and PCG iterations, while ignoring precomputations
since these are only needed once for a given mesh, independent on
the number or nature of problems solved on them.

With Cholmod. A highly optimized implementation of the full
Cholesky factorization for direct solving of symmetric positive defi-
nite systems, Cholmod [Chen et al. 2008] is widely used in graphics.
For small to intermediate size problems, Cholmod is vastly prefer-
able for its computational efficiency and stable numerical behaviors
regardless of the matrix conditioning. However, it has a compu-
tational complexity in n3/2 in 2D and n? in 3D, and a memory

total time (s)
LA FT

memory cost (Gb)
\\HHHH T 117

factorization time (s
[T T TTTrmT]]

L 11

102
10!

T T
Ll
—

(=3

S
T
Ll
T T T
Ll

10!

|
I
’ |
|
1
1
1

’

el

|
—
=)

C]

0 I
107 EL vl
10° 10° n 10° 10° n 10° 10° n
Cholmod vs. Our method
Fig. 12. Direct vs. iterative solves. For a 3D Poisson solve, Cholmod scales

non-linearly in the linear system size n for factorization time, total solve
time (which include factorization and back-substitution), and memory use,
and fails for n>1M; instead, a PCG-based iterative solve using our precon-
ditioner exhibits consistent linear behaviors on all three measurements.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

requirement of nlogn in 2D and n/3 in 3D [Davis 2006][Section
7.6]. Consequently, Cholmod cannot be applied to huge problems,
which is particularly limiting in 3D. Instead, our method is linear in
complexity (see Fig. 6) and memory usage. In Fig. 12, we solve a 3D
inhomogeneous Poisson equation on irregular Delaunay meshes of
increasing sizes, using PCG with our preconditioner vs. Cholmod.
Although our approach cannot compete with Cholmod for small
sizes, the curves clearly demonstrate that these two methods have
very different complexity trends, making our approach preferable
for both speed and storage. Moreover, when n exceeds a million,
Cholmod simply fails to factorize the matrix because the number
of non-zero fill-ins needed by the full Cholesky factor has already
exceeded the upper bound set by the library for array indexing.

With AMG preconditioners. We also compare our method with two
commonly-used AMG implementations: AMGCL [Demidov 2019]
and Trilinos [Trilinos 2020]. As a benchmark, we use a classical
Poisson problem as well as a linear elasticity problem:

p(x)
1(x)Au(x) + o

u(x) =0 Vx € B,

VO u) =g

where y is the spatially variant Young’s modulus and v is the Poisson
ration. 8B is a user-imposed constrained DoFs to ensure a unique
solution. In these experiments, the Trilinos solver is set to use the
smoothed aggregation coarsening strategy [Vanék et al. 1996] to
construct its prolongation operator, and a symmetric Gauss-Seidel
relaxation. For AMGCL, we found that its smooth aggregation imple-
mentation can lead to singular systems, and is thus not numerically
stable; instead, we picked the Ruge-Stitben method [Stiiben 2000]
for coarsening, and sparse inverse approximation [Grote and Huckle
1997] for relaxation. The total number of levels built by the AMG
preconditioners is automatically determined by their respective code
based on the input matrix; our method automatically produces 4 to
9 levels, depending only on the example size. For both AMG solvers,
pre- and post-relaxation are performed once as using more relax-
ations does not pay off in terms of convergence for ill-conditioned
systems. The bimaterial is generated by randomly assigning stiff
regions, occupying around 1/8 in 2D (resp., 1/64 in 3D) of the do-
main. Depending on the contrast between soft and stiff regions, the
system’s condition number can vary widely. Overall, our Cholesky-
based preconditioner is faster than the two AMG implementations

material solution material solution

[
0 100 200 0 1,000 2,000

iteration iteration
error error
10° [~ \ 9 108 7 T T 3
107 — 1075 \ -
10-13 L \ ™ | 13 L \ \ \ L
10 0 20 40 60 80
time (s) time (s)

[Krishnan et al. 2013] Ours (p =7.5) Ours (p = 8.0)

Fig. 13. Comparisons with [Krishnan et al. 2013]. For 160k points, either
on aregular grid (left) or uniformly distributed in a square (right), a Delaunay
triangulation of these points is computed, and an inhomogeneous Laplace
operator based on a heterogeneous medium made of stiff (blue) and soft
(white) materials (with a stiffness contrast of 10%) is discretized, then a
Poisson problem is finally solved. While the regular grid case leads to a
M-matrix on which their solver excels, as soon as the mesh is unstructured,
performance and accuracy are severely affected.

we tried in all examples except when the linear operator is a M-
matrix, which seems to happen only for Poisson problems on regular
grids. As mesh size and contrast increase, our preconditioner leads
to orders of magnitude improvement in computational time for a
given error tolerance, especially for elasticity where the stiffness
matrix is more involved than the Laplacian. It confirms a known flaw
of multigrid methods: their restriction and prolongation operators
lose efficacy when high contrast is present in the PDE coefficients.
In sharp contrast (pun intended), the homogenization roots of our
approach pay off handsomely in such cases.

With [Krishnan et al. 2013]. For Laplacian matrices, a precondi-
tioner was proposed by Krishnan et al. [2013]. For comparisons, we
solve on different meshes an inhomogeneous Poisson equations

{ = V- (a(x)Vu(x)) = g(x), (16)

u(x) =0 Vx € 9Q.

On a regular grid, the resulting Laplacian matrix only contains
non-positive off-diagonal entries, which is a particular instance of
M-matrices. In this very specific case, their method guarantees that
the condition number of the resulting preconditioned operator is
nicely bounded by simply iteratively dropping the weakest con-
nections. Their solver thus achieves remarkably fast convergence,
see Fig. 13. However, once the Laplacian matrix has positive off-
diagonal entries, their method can even fail to converge. In practice,
positive off-diagonal entries are generally hard to prevent since
arbitrarily-shaped element can occur quite often, even for Delaunay
triangulations as demonstrated in Fig. 13. In contrast, our method is
not quite sensitive to the matrix coefficients and works much more
consistently for different meshes. In both problems, our method

Multiscale Cholesky Preconditioning for Ill-conditioned Problems « 81:11

takes less than 20 seconds to get a solution on this vein-structured
material. Although we are far from rivaling with coefficient-aware
methods such as [Krishnan et al. 2013] for solving problems with
M-matrices, our method can deal with a far wider range of problems
without significant loss of efficiency.

When to use our IC-based preconditioner? In sum, our multiscale
preconditioner is particularly recommended (and often times, the
only viable solution) when the linear system is very large (as direct
solvers require too much memory), or when the operator is ill-
conditioned, but not a M-matrix. Therefore, our contribution adds
to the arsenal of linear solves available for graphics applications.

4.4 When does it pay off to be lazy for a wavelet?

The theoretical results of [Schéfer et al. 2021] on the exponential ac-
curacy of the Cholesky factorization and the optimal approximation
property of the coarse grained operator require the use of averaging
as opposed to the traditional subsampling approach when the order
of the PDE does not exceed the spatial dimension. Therefore, it does
not technically cover the use of lazy wavelets applied to Laplace op-
erators (or variants thereof) in two or three dimensions. However, as
illustrated in Fig. 5, we numerically observe exponential decay of the
approximation error of the sparse factorization using lazy wavelets,
even though this result has not been proven in the literature outside
of the translation-invariant setting treated by [Schroder et al. 1978].
Since lazy wavelets are also easier to construct and seem to be much
less susceptible to encountering negative pivots during the factor-
ization, we recommend their use when employing our approach as a
fast solver. On the other hand, the results of [Schéfer et al. 2021] on
near-optimal accuracy of the coarse-grained operator appear to be
sharp, meaning that its approximation property deteriorates when

applying lazy wavelets to second- [, T#iter (bilinear) | #iter (lazy)
order equations. For large Poisson | 20 184 433

. 25 135 278
problems with homogeneous coeffi- | 5/ g5 134
cient fields we also observe (see inset) | 35 80 117
that using wavelets based on bilinear | 40 67 72

basis functions, as opposed to subsampling, improves the conver-
gence speed of conjugate gradient. It is therefore desirable to develop
methods for improving the robustness of the incomplete Cholesky
factorization in averaging-based multiresolution basis. Efficient im-
plementation of supernodes in this setting may require using a non-
standard form of Cholesky factorization as introduced by [Gines
et al. 1998], but we leave further investigation to future work.

5 CONCLUSIONS

In this paper, we described the practical implementation of a novel
preconditioner to efficiently solve large-scale and ill-conditioned lin-
ear systems. Despite its roots in the literature on numerical homog-
enization and operator adapted multiresolution analysis [Schéfer
et al. 2021][Section 6.2], it can be cast as a standard zero fill-in in-
complete Cholesky factorization. This simple formulation allows
for implementations that readily exploit parallelism and level-three
BLAS routines. Our current implementation, available at https:
//gitlab.inria.fr/geomerix/ichol, is solely on CPU and is un-
doubtedly improvable, but it already outperforms highly-optimized
libraries for concrete examples that we took straight out of usual

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

81:12 « Chen,). etal
Laplacian Elasticity
irregular mesh regular mesh irregular mesh regular mesh
=% S5 = il 2 — = =% S — — =
% S i 4 I l “' v l’{ S T 4 I i “' v "‘
) RN 4 \ : Y, 4 \
» \ ’ S/ 4 by ») ’ ' 4)
< . \ aa ? A’? 1.», N i) 7 4 1.»,
5 \ 3 S > 5 - \ O 4 >
9 o g A . et y 9 » > £
4 4 e b4 4 >
with contrast (n=2 X 10°, g=1)

102 Eiiime 6] T B W ?ﬁme)] - fime (s) ; 103 time ()]] ?ﬁme © E
F g /—&—A o' E 1 1 10’ g E
] e s F] 102 4 102 E F E

1 . = E! E r 1

R S 100 = 1 g 1ol 102 -
Econtrast [contrast | B contrast | o 10° B contrast! = 10 = E EFcontrast |]
100 102 104 100 102 10* 100 102 104 100 102 10* 100 102 10* 100 102 104 100 102 10%

with size (contrast=10%, g=1)
Flime &) T 111117 - Fme ®) 71T Flime &) T 1111 " Mme® TR 10t Tme ®) T & 1] me® T TTEE 10t y””f ime () T 1 TT1TTT
F S E E E 102 | r E B 1
2 [= 4] E E! E E = 1 103 N H

1 E 1 0 E E E/E F 10% = E E
r N = E r § 1 L] E 2 . <

10! ;/E 102 i/§ ol 1w ;—/% 102 /: 101 /§Z /;
E El E E| E El S B 1 = 10 = E
[L onnld 1ot Lng Lol g0 a0 [AT Lng ol 5 L [ANEINIE!
10% 100 10° 100 10% 100 10° 100 10% 100 10° 100 10% 10 100

— Ours — AMGCL — Trilinos

Fig. 14. Comparisons with AMG libraries.

We take two implementations of AMG from two libraries, namely AMGCL [Demidov 2019] and Trilinos [Trilinos

2020], with a number of pre- and post-sweeps set to 1. Figures indicate time costs (including factorization and PCG iteration times) as a function of material
contrast. Our method is much less sensitive to contrast and problem size, and is particularly efficient when the size n becomes large and/or for bad condition
numbers. For our method, timings are within the red region depending on the actual value of p, for which we used the range [6.5,8.5] in 2D and [2.5,4.0] in

3D. All meshes are generated by Delaunay triangulation.

graphics applications. Fine-grained control of thread allocations
between parallelizable levels may further help with efficiency, while
leveraging GPUs for massive parallelization of both incomplete
Cholesky preconditioning and matrix-vector product in PCG would
be attractive to further boost the performance of our solver. Al-
though increasing the sparsity parameter p shows a trend towards
less frequent breakdowns during the factorization, finding effective
methods to either improve the efficiency of our current treatment
or to completely avoid the occurrence of negative pivots would also
add to the efficiency of our approach. We also limited our evalua-
tion to lazy wavelets, but the approach is fundamentally valid on
arbitrary refinement stencils, and a clear analysis of the pros and
cons of using higher order wavelets remains needed. Finally, while
we purposely adopted an approach that is totally blind to the ma-
trix coeflicients, other solvers managed to be extremely efficient on
M-matrices by exploiting these coefficients instead. Finding ways to
construct a hybrid version that uses our multiscale precomputation
and a runtime adaptation to the matrix coefficients may maintain
our clear efficiency advantage even when specific types of matrices
are encountered. Finally, applying our method to preconditioning
non-symmetric matrices via incomplete LU factorization is also an
interesting future research direction, which can be used to efficiently
solve systems arising from advection-diffusion problems.

ACKNOWLEDGMENTS

The authors wish to thank Houman Owhadi for supporting this
project from its onset, and Rasmus Tamstorf for early discussions.
Partial funding for JC and JH was provided by National Key R&D
Program of China (No. 2020AAA0108901) and NSFC (No. 61732016).
FS was partially supported by AFOSR grant FA9550-18-1-0271 and
ONR grant N00014-18-1-2363. MD gratefully thanks the GeoViC

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

team for their hospitality, and acknowledges additional funding from
Inria. Images of Fig. 10 are courtesy of pixabay.com, the Armadillo
model from Fig. 9 is courtesy of Stanford University, the hand model
from Fig. 7 is courtesy of AIM@SHAPE, while the bird model from
Fig. 8 is courtesy of the authors of [Liu et al. 2018].

REFERENCES

Raymond Alcouffe, Achi Brandt, Joel Dendy, Jr., and James W. Painter. 1981. The Multi-
Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients.
SIAM 7. Sci. Stat. Comput. 2, 4 (1981), 430-454.

Patrick R Amestoy, Timothy A Davis, and Iain S Duff. 1996. An approximate minimum
degree ordering algorithm. SIAM J. Matrix Analysis and Applications 17, 4 (1996),
886—-905.

Achi Brandt, James Brannick, Karsten Kahl, and Irene Livshits. 2011. Bootstrap AMG.
SIAM 7. Sci. Comput. 33, 2 (2011), 612-632.

Max Budninskiy, Houman Owhadi, and Mathieu Desbrun. 2019. Operator-adapted
wavelets for finite-element differential forms. J. Comput. Phys. 388 (2019), 144-177.

Desai Chen, David IW Levin, Wojciech Matusik, and Danny M Kaufman. 2017.
Dynamics-aware numerical coarsening for fabrication design. ACM Trans. Graph.
36, 4, Article 84 (2017).

Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numer-
ical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4,
Article 120 (July 2018).

Jiong Chen, Max Budninskiy, Houman Owhadi, Hujun Bao, Jin Huang, and Mathieu
Desbrun. 2019. Material-adapted refinable basis functions for elasticity simulation.
ACM Trans. Graph. 38, 6 (2019), 161.

Yanqing Chen, Timothy A Davis, William W Hager, and Sivasankaran Rajamanickam.
2008. Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and
update/downdate. ACM Trans. Math. Software 35, 3 (2008), 1-14.

Timothy A Davis. 2006. Direct methods for sparse linear systems. STAM.

Timothy A. Davis and William W. Hager. 2009. Dynamic Supernodes in Sparse Cholesky
Update/Downdate and Triangular Solves. ACM Trans. Math. Softw. 35, 4, Article 27
(2009).

Denis Demidov. 2019. AMGCL: An efficient, flexible, and extensible algebraic multigrid
implementation. Lobachevskii Journal of Mathematics 40, 5 (2019), 535-546.

Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edge-
preserving decompositions for multi-scale tone and detail manipulation. ACM
Trans. Graph. 27, 3 (2008), 1-10.

Raanan Fattal. 2009. Edge-Avoiding Wavelets and Their Applications. In ACM SIG-
GRAPH Proceedings. Article 22.

Miroslav Fiedler and Vlastimil Ptak. 1962. On matrices with non-positive off-diagonal
elements and positive principal minors. Czechoslovak Mathematical Journal 12, 3
(1962), 382-400.

D Gines, G Beylkin, and J Dunn. 1998. LU factorization of non-standard forms and
direct multiresolution solvers. Applied and Computational Harmonic Analysis 5, 2
(1998), 156-201.

Marcus J. Grote and Thomas Huckle. 1997. Parallel preconditioning with sparse ap-
proximate inverses. SIAM . Sci. Comput. 18, 3 (1997), 838-853.

Joseph Guinness. 2018. Permutation and grouping methods for sharpening Gaussian
process approximations. Technometrics 60, 4 (2018), 415-429.

Philipp Herholz and Marc Alexa. 2018. Factor once: reusing cholesky factorizations on
sub-meshes. ACM Trans. Graph. 37, 6 (2018), 1-9.

Philipp Herholz, Timothy A Davis, and Marc Alexa. 2017. Localized solutions of sparse
linear systems for geometry processing. ACM Trans. Graph. 36, 6 (2017), 1-8.

Philipp Herholz and Olga Sorkine-Hornung. 2020. Sparse Cholesky Updates for Inter-
active Mesh Parameterization. ACM Trans. Graph. 39, 6, Article 202 (2020).

Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Nu-
merical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3,
Article 51 (2009).

Ralf Kornhuber, Daniel Peterseim, and Harry Yserentant. 2018. An analysis of a class
of variational multiscale methods based on subspace decomposition. Math. Comp.
87, 314 (2018), 2765-2774.

Dilip Krishnan, Raanan Fattal, and Richard Szeliski. 2013. Efficient preconditioning of
Laplacian matrices for computer graphics. ACM Trans. Graph. 32, 4 (2013), 142.
Ligang Liu, Chunyang Ye, Ruigi Ni, and Xiao-Ming Fu. 2018. Progressive Parameteriza-

tions. ACM Trans. Graph. 37, 4, Article 41 (2018).

Axel Malqvist and Daniel Peterseim. 2014. Localization of elliptic multiscale problems.
Math. Comp. 83, 290 (2014), 2583-2603.

J. Andvandervorst Meijerink and Henk A. van der Vorst. 1977. An iterative solution
method for linear systems of which the coefficient matrix is a symmetric M-matrix.
Mathematics of computation 31, 137 (1977), 148-162.

Maxim Naumov. 2012. Parallel Incomplete-LU and Cholesky Factorization in the Precon-
ditioned Iterative Methods on the GPU. Technical Report. NVIDIA.

Matthieu Nesme, Paul G Kry, Lenka Jefabkova, and Francois Faure. 2009. Preserving
topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3,
Article 52 (2009).

Input: A point set V= {xi}”_o1 and a starting point x;,

i=

Output: Coarse-to-fine maximin order P = [ik]Z;é
1 P« [ipl;
2 d[ig] = 0;
3 valid[ig] < False;

he 0;// Initialize a max-heap
for x;, € V and valid[i] do
‘ h.push (i, dist(x;,, xi;));
7 end
while not h.empty() do
s | ip < h.pop();
10 append(P, ip);
11 dlip] < 0;
12 valid[ip] < False;
13 for i} € rangeSearch(x;,, £;,) and valid(iy) do

'S

o o

®

14 if dist(x,xi,) < d[ig] then
15 dli] « dist(x,-k,x,-p);

16 h.decrease(ig, d[ix]);

17 end

18 end

19 end

20 return P

Algorithm 2: Approximate farthest-first sampling for
coarse-to-fine reordering. A k-d tree is used to perform range
searches to prune out candidate points efficiently.

Multiscale Cholesky Preconditioning for Ill-conditioned Problems « 81:13

Houman Owhadi. 2017. Multigrid with rough coefficients and multiresolution operator
decomposition from hierarchical information games. SIAM Rev. 59, 1 (2017), 99-149.

Houman Owhadi and Clint Scovel. 2019. Operator-Adapted Wavelets, Fast Solvers,
and Numerical Homogenization: From a Game Theoretic Approach to Numerical
Approximation and Algorithm Design. Vol. 35. Cambridge University Press.

Sylvain Paris, Samuel W. Hasinoff, and Jan Kautz. 2015. Local Laplacian Filters: Edge-
Aware Image Processing with a Laplacian Pyramid. Commun. ACM 58, 3 (2015),
81-91.

Pietro Perona and Jitendra Malik. 1990. Scale-space and edge detection using anisotropic
diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7 (1990), 629-639.

Florian Schéfer, Matthias Katzfuss, and Houman Owhadi. 2020. Sparse Cholesky
factorization by Kullback-Leibler minimization. arXiv preprint arXiv:2004.14455
(2020).

Florian Schéfer, T. J. Sullivan, and Houman Owhadi. 2021. Compression, inversion, and
approximate PCA of dense kernel matrices at near-linear computational complexity.
Multiscale Modeling & Simulation 19, 2 (2021), 688-730.

Johann Schréder, Ulrich Trottenberg, and Kristian Witsch. 1978. On fast Poisson
solvers and applications. In Numerical Treatment of Differential Equations. Springer,
153-187.

Jennifer Scott and Miroslav Tma. 2014a. HSL_MI28: An efficient and robust limited-
memory incomplete Cholesky factorization code. ACM Trans. Math. Software 40, 4
(2014), 1-19.

Jennifer Scott and Miroslav Tima. 2014b. On positive semidefinite modification schemes
for incomplete Cholesky factorization. SIAM J. Sci. Comput. 36, 2 (2014), A609-A633.

Jennifer Scott and Miroslav Ttima. 2014c. On signed incomplete Cholesky factorization
preconditioners for saddle-point systems. SIAM J. Sci. Comput. 36, 6 (2014), A2984—
A3010.

Klaus Stiiben. 2000. Algebraic Multigrid (AMG): an Introduction with Applications.
Multigrid (2000).

Raghunathan Sudarshan. 2005. Operator-adapted Finite Element Wavelets: theory and
applications to a posteriori error estimation and adaptive computational modeling.
Ph.D. Dissertation. MIT, Department of Civil and Environmental Engineering.

Rasmus Tamstorf, Toby Jones, and Stephen F. McCormick. 2015. Smoothed Aggregation
Multigrid for Cloth Simulation. ACM Trans. Graph. 34, 6, Article 245 (2015).

Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust
Quasistatic Finite Elements and Flesh Simulation. Symp. on Comp. Anim. (2005),
181-190.

Rosell Torres, Jose M. Espadero, Felipe A. Calvo, and Miguel A. Otaduy. 2014. Interactive
Deformation of Heterogeneous Volume Data. Lecture Notes in Computer Science
8789 (2014).

Trilinos. 2020. The Trilinos Project Website. https://trilinos.github.io

Petr Vanék, Jan Mandel, and Marian Brezina. 1996. Algebraic multigrid by smoothed
aggregation for second and fourth order elliptic problems. Computing 56, 3 (1996),
179-196.

Irad Yavneh. 2006. Why Multigrid Methods Are So Efficient. Computing in Science
Engineering 8, 6 (2006), 12-22.

Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient
multigrid method for the simulation of high-resolution elastic solids. ACM Trans.
Graph. 29, 2 (2010), 1-18.

ACM Trans. Graph., Vol. 40, No. 4, Article 81. Publication date: August 2021.

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Overview

	2 Cholesky-based operator-adapted wavelets
	2.1 Recap of operator-adapted wavelets
	2.2 Cholesky-based reformulation
	2.3 Multilevel Cholesky
	2.4 Discussion

	3 Multiscale Incomplete Cholesky
	3.1 Step 1: Multiscale ordering
	3.2 Step 2: Sparsity pattern
	3.3 Step 3: Zero fill-in incomplete Cholesky factorization
	3.4 Fast implementation

	4 Results and Discussion
	4.1 Applicablity
	4.2 Quantitative analysis of IC
	4.3 Comparisons with existing solvers
	4.4 When does it pay off to be lazy for a wavelet?

	5 Conclusions
	Acknowledgments
	References

