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FINITE ELEMENT METHOD (FEM)

 Generalizable to most types of PDEs
− Linear or nonlinear PDEs

− Homogenous or inhomogeneous coefficients

 Requires volumetric discretization
− Large number of degrees of freedom

− High-quality volumetric tessellation is often hard to get
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FINITE ELEMENT METHOD (FEM)

 Generalizable to most types of PDEs
− Linear or nonlinear PDEs

− Homogenous or inhomogeneous coefficients

 Requires volumetric discretization
− Large number of degrees of freedom

− High-quality volumetric tessellation is often hard to get

SOLVING PDES

BOUNDARY ELEMENT METHOD (BEM)

 Only needs boundary discretization
− Huge reduction in dimensionality

− Works for infinite or semi-infinite domains as well 

 Limited to certain types of problems
− Only applicable to linear and homogenous problems

− Involves dense and often asymmetric linear systems

− Quite common, though!

[Sugimoto et al. 2022]
[Chen et al. 2018]

[James and Pai 1999]
[Bargteil et al. 2007]

[Orzan et al. 2008]



[Sawhney et al. 2023]

NUMERICAL METHODS FOR BEM

 Stochastic approaches (Walk-on-{Sphere/Star/Boundary})
− Based on mean-value property of harmonic functions or Neumann 

series for (𝐼𝐼 − 𝐴𝐴)−1

− Fast to evaluate for a single point
− Easily integrated to rendering code base
− Yet, slow to converge (in the square root of #paths)



−

•

−

•

[Sawhney and Crane 2020]

[Miller et al. 2024]

[Sugimoto et al. 2023]
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NUMERICAL METHODS FOR BEM

 Stochastic approaches (Walk-on-{Sphere/Star/Boundary})
− Based on mean-value property of harmonic functions or Neumann 

series for (𝐼𝐼 − 𝐴𝐴)−1

− Fast to evaluate for a single point
− Easily integrated to rendering code base
− Yet, slow to converge (in the square root of #paths)

 Deterministic approaches
− Direct solvers (e.g., LU, SVD)

• High time/memory complexity

− Iterative solvers (e.g., GMRES)
• Slow/unguaranteed convergence

[Sawhney and Crane 2020]

[Miller et al. 2024]

[Sugimoto et al. 2023]



RECAP BEM

 Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]

− Direct approaches: solve for Dirichlet or Neumann boundary conditions

• based on Green’s third identity or its variants

− Indirect approaches: solve for an unknown density on the boundary

• E.g., “charges” for potential problems, “forces” for elasticity
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RECAP BEM

 Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]

− Direct approaches: solve for Dirichlet or Neumann boundary conditions

• based on Green’s third identity or its variants

− Indirect approaches: solve for an unknown density on the boundary

• E.g., “charges” for potential problems, “forces” for elasticity

 Indirect approach: single layer potential for Dirichlet problems
• Solve stage: solve for “charges” that enforce a set of given boundary “potential”

• Evaluation stage: evaluate the “potential” at any target point in space
source points

boundary points

target points

 Results in Fredholm integral 
equation of the first kind, more 
Ill-posed than the second kind

 Need efficient preconditioners 

 Any symmetric and sparse 
structures to leverage to get 
a stable and scalable solver?
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EXPLOIT SYMMETRY

 To obtain a symmetric discrete BIE
− Either identical basis functions for collocated source and boundary points
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EXPLOIT SYMMETRY

 To obtain a symmetric discrete BIE
− Either identical basis functions for collocated source and boundary points

− Or solve least-squares problem 𝑲𝑲𝑻𝑻𝑲𝑲𝑲𝑲 = 𝑲𝑲𝑻𝑻𝒃𝒃

• e.g., Fredholm integral equations of the second kind

− Double-layer potential for Dirichlet problems

− Single-layer potential for Neumann problems

Discretize boundary integral equations (BIE)

Discretize boundary data 𝑏𝑏 𝑧𝑧 = ∑𝑖𝑖 𝜓𝜓𝑖𝑖 𝑧𝑧 𝑏𝑏𝑖𝑖

Discretize sources 𝜎𝜎 𝑦𝑦 = ∑𝑗𝑗𝜙𝜙𝑗𝑗 𝑦𝑦 𝑠𝑠𝑗𝑗

source points

boundary points

target points

𝐾𝐾 𝑠𝑠 = 𝑏𝑏

Double-layer potential



EXPLOIT SPARSITY

 Directly applying incomplete Cholesky to factorize 𝐾𝐾 
     [Chen et al. 2021]

− Accuracy issue: Numerous entries must be dropped out for efficiency 

− Stability issue: Loss of positive definiteness causes breakdowns
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EXPLOIT SPARSITY

 Directly applying incomplete Cholesky to factorize 𝐾𝐾 
     [Chen et al. 2021]

− Accuracy issue: Numerous entries must be dropped out for efficiency 

− Stability issue: Loss of positive definiteness causes breakdowns

 However, boundary integral operators are conceptually close 
to the inverse of their differential operator
− Green function is the solution subject to a singular impulse

− E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance

 So, the inverse of BIE matrices could be sparse
− True for many covariance matrices assembled by fast-decaying kernel 

functions in Gaussian Process

− Similar for Green’s functions as well

𝐾𝐾𝑠𝑠 = 𝑏𝑏

𝐾𝐾 ≈ 𝐿𝐿𝐿𝐿𝑇𝑇

[Chow and Saad 2014]

𝑮𝑮 𝒙𝒙,𝒚𝒚 = 𝐞𝐞𝐞𝐞𝐞𝐞(−
𝒙𝒙 − 𝒚𝒚 𝟐𝟐

𝟐𝟐𝒍𝒍𝟐𝟐
)
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INVERSE CHOLESKY PRECONDITIONER

 We leverage inverse Cholesky factorization to precondition BIE matrices

 Kaporin’s construction for 𝐿𝐿𝑆𝑆 [Kaporin 1994]

 Properties
− Massively parallel: each column of 𝐿𝐿𝑆𝑆 is computed independently to others. Good for GPUs!

− Memory efficient: no need to assemble the global BIE matrix. 

− Stable: no breakdowns will occur

− Variational interpretation(s): minimizing Kaporin’s condition number*, KL-divergence, and a constrained quadratic form

𝐾𝐾𝑠𝑠 = 𝑏𝑏 𝐾𝐾−1 ≈ 𝐿𝐿𝑆𝑆𝐿𝐿𝑆𝑆𝑇𝑇 𝑠𝑠 ≈ 𝐿𝐿𝑆𝑆𝐿𝐿𝑠𝑠𝑇𝑇𝑏𝑏

𝐿𝐿𝑆𝑆𝑗𝑗,𝑗𝑗

𝑗𝑗

𝐾𝐾𝑗𝑗,∘

𝐿𝐿𝑆𝑆

𝜅𝜅Kap(𝑀𝑀) =
1
𝐵𝐵

tr(𝑀𝑀) 
det 𝑀𝑀 1/𝐵𝐵

*



OVERVIEW

Precompute (CPU)

Needs boundary meshes 

or just points

Compute (GPU)

Needs PDEs and 

associated Green function 

Solve (GPU+CPU)

Needs boundary 
conditions

Evaluate (CPU)

Needs interpolate/extrapolation 
points
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A fine-to-coarse reordering

REORDERING DOFS

 Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]

− Max-min ordering  

− Reverse max-min ordering                                 , i.e., fine-to-coarse 

 Intuition
− Make sampling points space uniformly within each scale

− The screening effect in kriging [Stein 2002]

• GP: conditioning a subset of points results in localized correlations

𝑓𝑓 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 = 𝑓𝑓 𝐴𝐴 𝑓𝑓 𝐵𝐵 𝐴𝐴 𝑓𝑓 𝐶𝐶 𝐴𝐴,𝐵𝐵 𝑓𝑓 𝐷𝐷 𝐴𝐴,𝐵𝐵,𝐶𝐶 = 𝑁𝑁(0, Σ)
𝑓𝑓 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷 ≈ 𝑓𝑓 𝐴𝐴 𝑓𝑓 𝐵𝐵 𝐴𝐴 𝑓𝑓 𝐶𝐶 𝐴𝐴,𝐵𝐵 𝑓𝑓 𝐷𝐷 𝐴𝐴,𝐵𝐵,𝐶𝐶 = 𝑁𝑁(0, 𝐿𝐿𝐿𝐿T −1)

Too far Too far
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Merge j, k into a single 
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FOR PRECONDTIONER

• Supernode mode to reuse local factorizations as 
much as possible

EFFICIENT IMPLEMENTATION 

FOR PCG ITERATIONS

• Fast Multipole Method to evaluate matrix-vector 
products

Supernodal sparsity pattern

Merge j, k into a single 
super node 
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EXAMPLES OF APPLICATION

LINEAR ELASTICITY HELMHOLTZ EQUATION

The method of fundamental solutions (MFS)
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LAPLACE’S EQUATION

Input
#DoF > 1M



LAPLACE’S EQUATION

Input
#DoF > 1M

After only 9 iterations!
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Densely constrained Kelvinlets

Constrained Kelvinlet deformer [de Goes and James 2017]
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Densely constrained Kelvinlets

Constrained Kelvinlet deformer [de Goes and James 2017]
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HELMHOLTZ EQUATION

 Least-squares solves are always needed for Helmholtz equations
− The BIE/MFS matrices are complex symmetric, but not Hermitian

− Cholesky factorization does no exist

𝑡𝑡 (asm.) =62.4s
𝑡𝑡 (fac.) =0.31s 
𝑡𝑡 (pcg) =0.28s 
𝑡𝑡 (eval.) =5.5s 
err.=0.006167

# boundary points=12.7K
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BEM FROM GAUSSIAN PROCESS VIEWPOINT

 Formulate stochasticity in Computer Graphics
− Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]

− Rendering, e.g., light transport [Seyb et al. 2024]
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BEM FROM GAUSSIAN PROCESS VIEWPOINT

 Formulate stochasticity in Computer Graphics
− Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]

− Rendering, e.g., light transport [Seyb et al. 2024]

 Boundary value problems from a statistical point of view
− Investigate the distribution of all possible solutions, not just a single one!

 Gaussian-process based inference v.s. MFS
− Beyond conditional mean

− Conditional variance for uncertainty quantification

− Tell the probability of the solution falling within a given range

Gaussian Process MFS
Kernel function Green’s function
Observation Boundary condition
Conditional mean Solution
Prediction Evaluation

Uncertainty quantification of BIE solves
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• Generalize the idea to …
− Asymmetric systems from elliptic PDEs or non-elliptic PDEs without 

least-squares solves, e.g., wave equations [Schreck et al. 2019]
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FUTURE WORKS

• Generalize the idea to …
− Asymmetric systems from elliptic PDEs or non-elliptic PDEs without 

least-squares solves, e.g., wave equations [Schreck et al. 2019]

− Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]

• Strategies for further speedup  
− Problem-adapted FMM instead of “black-box” FMM

− Faster matrix-vector product, e.g., H-matrix evaluation

• Simulation meets stochasticity
− Make use of uncertainty quantification for adaptive simulation

− Develop stochastic representation to account for the uncertainty of a 
complex dynamical system



THANKS!
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