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SOLVING PDES (&) 1o

FINITE ELEMENT METHOD (FEM) BOUNDARY ELEMENT METHOD (BEM)

Generalizable to most types of PDEs
Linear or nonlinear PDEs
Homogenous or inhomogeneous coefficients
Requires volumetric discretization

Large number of degrees of freedom

High-quality volumetric tessellation is often hard to get

[Chen et al. 2018]

[Bargteil et al. 2007]
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FINITE ELEMENT METHOD (FEM)

Generalizable to most types of PDEs
Linear or nonlinear PDEs
Homogenous or inhomogeneous coefficients
Requires volumetric discretization

Large number of degrees of freedom

High-quality volumetric tessellation is often hard to get

[Chen et al. 2018]

[Bargteil et al. 2007]

BOUNDARY ELEMENT METHOD (BEM)

Only needs boundary discretization
Huge reduction in dimensionality
Works for infinite or semi-infinite domains as well
Limited to certain types of problems

Only applicable to linear and homogenous problems

Involves dense and often asymmetric linear systems

Quite common, though!

;‘n': )
[Sugimoto et al. 2022]

/‘ [Orzan et al. 2008]

[James and Pai 1999]
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NUMERICAL METHODS FOR BEM P e

Stochastic approaches (Walk-on-{Sphere/Star/Boundary})
Based on mean-value property of harmonic functions or Neumann
series for (I — A)™1
Fast to evaluate for a single point
Easily integrated to rendering code base

Yet, slow to converge (in the square root of #paths)

[Miller et al
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NUMERICAL METHODS FOR BEM

Stochastic approaches (Walk-on-{Sphere/Star/Boundary})
Based on mean-value property of harmonic functions or Neumann
series for (I — A)™1
Fast to evaluate for a single point
Easily integrated to rendering code base

Yet, slow to converge (in the square root of #paths)

Deterministic approaches
Direct solvers (e.g., LU, SVD)
High time/memory complexity

lterative solvers (e.g., GMRES)

Slow/unguaranteed convergence
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Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]

Direct approaches: solve for Dirichlet or Neumann boundary conditions
based on Green’s third identity or its variants
Indirect approaches: solve for an unknown density on the boundary

E.g., “charges” for potential problems, “forces” for elasticity
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Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
Direct approaches: solve for Dirichlet or Neumann boundary conditions
based on Green’s third identity or its variants

Indirect approaches: solve for an unknown density on the boundary

E.g., “charges” for potential problems, “forces” for elasticity

Indirect approach: single layer potential for Dirichlet problems

Solve stage: solve for “charges” that enforce a set of given boundary “potential”

boundary points
G(z,y)o(y) dv =E M. — —
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Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
Direct approaches: solve for Dirichlet or Neumann boundary conditions
based on Green’s third identity or its variants

Indirect approaches: solve for an unknown density on the boundary

E.g., “charges” for potential problems, “forces” for elasticity

Indirect approach: single layer potential for Dirichlet problems

Solve stage: solve for “charges” that enforce a set of given boundary “potential”

boundary points

/M G(z,y)o(y)dvy = b(z) Vz e M. /_./':\-'\

Evaluation stage: evaluate the “potential” at any target point in space

(@
\ § source points )

[ , >
@E./M G(x,y)o(yyavy,: \\o—/ o

@ target points
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(@ )

Results in Fredholm integral

Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]

Direct approaches: solve for Dirichlet or Neumann boundary conditions

based on Green’s third identity or its variants equatlon of the first kmd, more

Indirect approaches: solve for an unknown density on the boundary lll-posed than the second kind

E.g., “charges” for potential problems, “forces” for elasticity Need efficient preconditioners
Indirect approach: single layer potential for Dirichlet problems Any symmetric and sparse
Solve stage: solve for “charges” that enforce a set of given boundary “potential” structures to Ieverage to get
boundary points
a stable and scalable solver?
/ G(z,y)o(y) dvy = b(z) Yz € M. ‘/‘7\-&\ & )
M -
® g J ‘\
Evaluation stage: evaluate the “potential” at any target point in space ( * ° T
‘\ § source points l‘/
)
u(x) = f G(x,y)o(y) dvy. \a—// @
M

@ target points
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Discretize boundary integral equations (BIE)

/M G(z,y)o(y) dvy, =b(z) Vz e M.

boundary points

e target points




EXPLOIT SYMMETRY (&) e

Discretize boundary integral equations (BIE) K S = b
S
=1

fM Gz y)oly) vy =b(z) Vze M. | ] (] 86w nv;@ dvyang) s,= [ b,

Wboundary data b(z) = Y Y;(2)b;

Discretize sources a(y) = X ; ¢;(¥)s;

boundary points

\ ‘source points "‘/
\J\‘}_’/‘_‘/ s

a target points
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Discretize boundary integral equations (BIE) K S = b
S
=1

fM Gz y)oly) vy =b(z) Vze M. | ] (] 86w nv;@ dvyang) s,= [ b,

Wboundary data b(z) = X; ¥;(2)b;

Discretize sources o (y) = X.; ¢;(¥)s; boundary points
p/* P\‘ 9\
To obtain a symmetric discrete BIE / N
Either identical basis functions for collocated source and boundary points @
« b
Or solve least-squares problem KTKs = KTb
Q '9 source points
> @

J\}_/L"/

a target points
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Discretize boundary integral equations (BIE) K S = b
S
=1

fM Gz y)oly)dvy =b(z) Vze M. | (] 86w nv;@ dvyang) s,= [ b,

Wboundary data b(z) = Y Y;(2)b;

Discretize sources a(y) = X ; ¢;()s; boundary points
—_
s p/“‘ : 9\
To obtain a symmetric discrete BIE / 3
Either identical basis functions for collocated source and boundary points @
Or solve least-squares problem KTKs = KTb )
< source points
e.g., Fredholm integral equations of the second kind P
9
Double-layer potential for Dirichlet problems k _ ‘_b\‘_“—_/-“/
Single-layer potential for Neumann problems /
Double-layer potential

a target points

V|
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Directly applying incomplete Cholesky to factorize K

[Chen et al. 2021] KS — b

Accuracy issue: Numerous entries must be dropped out for efficiency

Stability issue: Loss of positive definiteness causes breakdowns

K ~LL"
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Directly applying incomplete Cholesky to factorize K
[Chen et al. 2021]
Accuracy issue: Numerous entries must be dropped out for efficiency

Stability issue: Loss of positive definiteness causes breakdowns

However, boundary integral operators are conceptually close
to the inverse of their differential operator

Green function is the solution subject to a singular impulse

E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance

m&%&.ﬂ AT

Compliance
Forces Displacements

K ~LL"
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Directly applying incomplete Cholesky to factorize K

[Chen et al. 2021] KS — b

Accuracy issue: Numerous entries must be dropped out for efficiency

Stability issue: Loss of positive definiteness causes breakdowns

However, boundary integral operators are conceptually close K e
~y
to the inverse of their differential operator
Green function is the solution subject to a singular impulse
NN
E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance §%“ !
. . RN
So, the inverse of BIE matrices could be sparse {%
True for many covariance matrices assembled by fast-decaying kernel = N &
= N
functions in Gaussian Process - -
300 \%
Similar for Green'’s functions as well ,% - B
g \ lete b 80 100 180 200 250 300 - as0 400 te-08
{a) Inverse Laplacian matrix {b) Inverse exponential covariance matrix

[Chow and Saad 2014]
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We leverage inverse Cholesky factorization to precondition BIE matrices

K-1 =~ L.LS
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We leverage inverse Cholesky factorization to precondition BIE matrices

Ks=b K*~ILgl: s~ LcLLh




INVERSE CHOLESKY PRECONDITIONER (&) e

We leverage inverse Cholesky factorization to precondition BIE matrices

Ks =), K1 LSL?S: S = LsL:I;b

Kaporin’s construction for Lg [Kaporin 1994] Ls
-1
K58 .
LS ; — R V] = 1B,
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INVERSE CHOLESKY PRECONDITIONER (&) e

We leverage inverse Cholesky factorization to precondition BIE matrices

Ks =), K1 LSL?S: S = LsL:I;b

Ls

—1 LSj'j

2O J
Lg ;= ~——~ — Vj=1.B
’ \/eT-K_1 e;
J758;7]

Kaporin’s construction for L¢ [Kaporin 1994]
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We leverage inverse Cholesky factorization to precondition BIE matrices
-1 T T
Ks=b K '=ILsls +s =~ LgLsb

Kaporin’s construction for L¢ [Kaporin 1994]

e;=(1,0,...,0)" eR"/

Ky s,€)
2O J
L. ;= ~——~ — Vj=1.B

. ,J
J T—1
\/@j Kss,€J
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INVERSE CHOLESKY PRECONDITIONER tsleihingy

We leverage inverse Cholesky factorization to precondition BIE matrices

Ks=b K*'=~Lll+s~LcLLb

- | | L
Kaporin’s construction for L¢ [Kaporin 1994] e;=(1,0,.. L0)TeRSS
L. j
-1 Jr
KSj,Sj €; . N
LS_,J. — , Vj=1.B, L,
’ K
\/ S; 3 €; T
\—
Properties
Massively parallel: each column of L¢ is computed independently to others. Good for GPUS!
Memory efficient: no need to assemble the global BIE matrix. * 1 tr(M)
kiap(M) = 5 et a8

Stable: no breakdowns will occur
Variational interpretation(s): minimizing Kaporin’s condition number®, KL-divergence, and a constrained quadratic form
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Precompute (CPU)

Needs boundary meshes

or just points

AU Yy
é N A N
Compute (GPU) Solve (GPU+CPU) Evaluate (CPU)
Needs PDEs and Needs boundary Needs interpolate/extrapolation
- - conditions points
L associated Green function P N AN )
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Compute reverse
max-min ordering on
source points (Sec. 3.3)

Precompute (CPU)

Compute simplicial
sparsity pattern S
(Sec. 3.3)

Aggregate points into
supernodes {J; }x
(Sec. 3.4)

~

Build supernodal
sparsity pattern S
(Sec. 3.4)

D

a

Compute (GPU)

{

Assemble K 5.8, for each

supernode in 'parallel

~

Factorize Kg g and
7S]
compute L o, in
parallel (Eq. (8))

4 Solve (GPU+CPU) )
Solve BIE Ks=b with

our preconditioner

-

Evaluate (CPU)

~

LgLy (Sec. 3.5)

S 7/

.

Extrapolate the solution

to target points using
FMM (Sec. 3.6)

2




REORDERING DOFS it i

Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]

Max-min ordering i = argmax min dist(y,,y; ),
g fi = argmax  win (Yg:Yi,)

Reverse max-min ordering P={ig_y, ..., i1, iy } , i-€., fine-to-coarse

p T — . L — 2 p—

ek e T e s T —vim ey

last 50 last 150 last 250

A fine-to-coarse reordering




REORDERING DOFS it i

Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]
Max-min ordering ix = arg;naXpe{mo,ikn_l} dist(yg. ;).
Reverse max-min ordering P={ig_y, ..., i1, iy } , i-€., fine-to-coarse

Intuition

Make sampling points space uniformly within each scale

The screening effect in kriging [Stein 2002] S ;

p T — . L — 2 p—

ek e T e s T —vim ey

last 50 last 150 last 250

A fine-to-coarse reordering
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Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]
Max-min ordering iy = argglaxpe{mo,ikn—l} dist(yq, yl-p),
Reverse max-min ordering P={ig_y, ..., i1, iy } , i-€., fine-to-coarse

Intuition

Make sampling points space uniformly within each scale

The screening effect in kriging [Stein 2002] e ;

GP: conditioning a subset of points results in localized correlations s _ - _ -

el - AT RS o

last 50 last 150 last 250

A fine-to-coarse reordering

o f(4,B,C,D) = f(A)f (BIAf(C|A B)f(D|A,B,C) = N(0,%)
==, £(4,8,C,D) ~ f(Af(BIAS(CIARF(DIABY) = N(O, (LL?)™h
EEE = Too far Too far
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Length scale returned in coarse-to-fine ordering

t, = miny,e ¢ 1y dist(y;,. y; )
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Length scale returned in coarse-to-fine ordering

t, = miny,e ¢ 1y dist(y;,. y; )

Lower-triangular sparsity patter

S::{(i, Ji =z jand dist(x;, x;) < pmin(¢;,¢;)

—

Again, screening effect: a fine-scale point is unlikely
to be correlated to distant points on coarser scales
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Length scale returned in coarse-to-fine ordering

t, = miny,e ¢ 1y dist(y;,. y; )

Lower-triangular sparsity patter

S:={(i, j)|i > jand dist(xl-,xj) < pmin(t’i,fj)}

Again, screening effect: a fine-scale point is unlikely
to be correlated to distant points on coarser scales




CONSTRUCTING SPARSITY PATTERN (&) 1o

Length scale returned in coarse-to-fine ordering

t, = miny,e ¢ 1y dist(y;,. y; )

Lower-triangular sparsity patter

S:={(i, j)|i > jand dist(xl-,xj) < pmin(t’i,fj)}

Again, screening effect: a fine-scale point is unlikely

coarse scale 4 y to be correlated to distant points on coarser scales

y 1072 () (b) (c)
J 2 /] . | q 5 | | 5 I
a8 IDE‘E{KKEP} B luglﬂ ”DKL} lugm["I*-LEUﬂjﬂ
L 1L il |
i 0 - — 0 -
0 | S——-—a—ta—a | | ' | | '
2 4 6 3 2 4 6 8 2 4 6 3

p p p
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FOR PRECONDTIONER FOR PCG ITERATIONS
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FOR PRECONDTIONER FOR PCG ITERATIONS

Supernode mode to reuse local factorizations as
much as possible

Supernodal sparsity pattern

N\

Sk
. k Merge j, k into a singl€

super node
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FOR PRECONDTIONER FOR PCG ITERATIONS
Supernode mode to reuse local factorizations as Fast Multipole Method to evaluate matrix-vector
much as possible products

Supernodal sparsity pattern
Transfer Pass/M2L Downward Pass/L2L L2P

V-7 7 7 4% o 7 AAEY)

y A B e
A ey M2L Wi vt d i O
a . LaL
1=3 ‘ Al -I.: '..|I _'., l=3

LN ?
:‘ﬂ MaL
- —

N
N
N
Sk
. k Merge j, k into a singl€

super node

Direct Pass/P2P

Y 7 4 PP




EXAMPLES OF APPLICATION

LAPLACE’S EQUATION

Au=0

1
g In(r), in 2D
T
Gy =y |
_— in 3D
4rr

LINEAR ELASTICITY
1
1—2v

a—>b

Au + V(V-u)=0,

b
In(1/r)I + —zrrT, in 2D

_ r r
Cxy)=1,-b b - _
I+ —rr, in 3D
r -

@ SIGGRAPH 2024

HELMHOLTZ EQUATION

Au + k*u =0,

i
ZH(()” (kr),  in 2D,

Gx.y) = exp(ikr)

3

in 3D,

dmr




DENVER+ 28 JUL — 1 AUG
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LAPLACE’S EQUATION LINEAR ELASTICITY HELMHOLTZ EQUATION
1 2
Au=0 Au+ ——V(V-u) =0, Au+k“u =0,
1—-2v
1 . a—b>b b T . i 1 .
e In(r), in 2D - In(1/r)I + r—2rr , in 2D —Hé )(kr), in 2D,
G(x,y) = G(x,y) = G(x,y) = .

ﬁ, in 3D a - 2 s %rrT, in 3D exz Sfr), in 3D,

7

The method of fundamental solutions (MFS)

RN |
. P‘ "" ey : N Y |
4 e
i (F. P
Hn A,
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10° ST
il
1 p# '
& | : d
1 ~ 1
10 o N
[ | s ~ - —"
1
) iL : time (s) Jacobi preconditioner Our preconditioner
10 ° = - | L L | ] L - - z A
10,000 0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 5 5 5

Teullik 1.1-10° IWZeabig
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# sources (box): 14408

p=3
# target (car): 199249

t(precomp.) =0.132s
t(comp.) =0.644s
#iter.=10

t(pcg) =7.270s

: \%n:il.)zll.é%s
_ ~ FPr=0.003106

oo 1 > e =
= SR - < 2o o L4
- i - *
= ‘{-'-- TEiEe — ”*} \N; g : okt g . P S i
- % - ¥ S = — g o e TR ‘3,//.' T = e " A -~
o =

..~ 7 Constrained Kelvinlet deformer jde Goes and James 2077] 5~ ©
p=3 p=3
t(precomp.) =0.138s

P s t(precomp.) =0.182s

e t(comp.) =0.631s

> o
e
e
)_/L
- R
5 i
. =

#iter.=10

t(pcg) =9.168s
t(eval.) =10.542s
Err=0.001526

> e
-
— ~
.i = -
Fia =
—it =
o — ¥ ’
R "
- SR
~ “i-
»
~
ik

t(comp.) =0.633s
#iter. =10

t(pcg) =7.530s
t(eval.) =11.775s
Err=0.004197
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# sources (box): 14408

p=3
# target (car): 199249

t(precomp.) =0.132s
t(comp.) =0.644s
#iter. =10

t(pcg) =7.270s

/. (eval.) =11.686s
. 7 >7 T D)
— g S —
e~ : e ! S ]
“ .~ ' Constrained Kelvinlet deformer (de Goes and Jarmies 2077] 7
< 4 Gonstrained-Kelvinlet deformer [de Goes and James 2077} =77~ . %
p=3 p=3
t(precomp.) =0.138s t(precomp.) =0.182s
t(comp.)=0.631s t(comp.) =0.633s
iter =10 #iter. =10
(pcg) =9.168s t(pcg) =7.530s
eval.) =10.542s t(eval.) =11.775s
Err=0.001526 Err=0.004197
e = 7\". o =
= - . =
= =g X c
e s —aeEaTh 7
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Least-squares solves are always needed for Helmholtz equations

- The BIE/MFS matrices are complex symmetric, but not Hermitian
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= Least-squares solves are always needed for Helmholtz equations

- The BIE/MFS matrices are complex symmetric, but not Hermitian

- Cholesky factorization does no exist




HELMHOLTZ EQUATION () oo

Least-squares solves are always needed for Helmholtz equations

The BIE/MFS matrices are complex symmetric, but not Hermitian

Cholesky factorization does no exist

-t (pcg) =0.28s
"~ t(eval.)=5.5s
Wt g o €r1.=0.006167

E @ -




COMPARISON WITH SVD
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Boundary size

B SVD Ours
t(fac.) t(slv.) | t(precomp.) t(comp.) #iters t(pcg) t(total) Err
1280 4.864 0.003 0.004 0.419 15 0.005 0.427 0.000706
2560 33.757 0.011 0.007 0.715 15 0.013 0.735 0.000679
5120 | 261.454 0.045 0.013 1.270 15 0.0438 1.331 0.004405
7680 | 911.212 0.156 0.023 3.478 15 0.099 3.600 0.003497
10240 | 2405.59 0.303 0.032 7.170 15 0.167 7.369 0.003665
B=2560 [ B=10240 | . &
v wl N A {
i, i “":"oﬁ ol e 4 ﬁ/\/
Wes z WSt o AT
Qs )\/ oo I R R y
1) | \N":::“-‘:;'.‘ s ‘I " '\: ‘ ’ f .h::::" ‘:":;:‘f"'t:} “{r‘J':m‘ . ‘h‘
i laamaati i (Uit LY DAt sl vl :.':g;"fgll'ff{%ﬂ
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Boundary size

B SVD Ours
t(fac.) t(slv.) | t(precomp.) t(comp.) #iters t(pcg) |t(total) Err
1280 4.864 0.003 0.004 0.419 15 0.005 0.427 0.000706
2560 33.757 0.011 0.007 0.715 15 0.013 0.735 0.000679
5120 | 261.454 0.045 0.013 1.270 15 0.0438 1.331 0.004405
7680 | 911.212 0.156 0.023 3.478 15 0.099 3.600 0.003497
10240 | 2405.59  0.303 0.032 7.170 15 0.167 7.369 0.003665
B=2560 "/):':“ B=10240 | ‘ 2
v wl N A {
i, i ”":'oﬁ Ny NN 7 ﬁ/\/
Wes z LTI | AT
~~.:;’* \L\/ ! "-I:“,..."%,\t, e Yot P ﬁ/\/
1. \“‘“:,,:." (T ] "- : ? fh:mt f‘;;:“::"f‘p;::} ;'f‘ .:-.n‘% SARAL
ahlaaszdieatii||) (it ) L ARa3d i bdstirane ;-é;”irf’:"rf%, .




BEM FROM GAUSSIAN PROCESS VIEWPOINT

Formulate stochasticity in Computer Graphics

¥y

Rendering, e.qg., light transport [Seyb et al. 2024]

- -

.

Zero
levelset

SIGGRAPH 2024
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Formulate stochasticity in Computer Graphics . ’g

Geometry processing, e.g., surface reconstruction [Sellan and Jacobson 2022]
%

Rendering, e.qg., light transport [Seyb et al. 2024]

- LY
By
t levelset

Boundary value problems from a statistical point of view

Investigate the distribution of all possible solutions, not just a single one!




BEM FROM GAUSSIAN PROCESS VIEWPOINT it i

Formulate stochasticity in Computer Graphics , ”

- ;i
Geometry processing, e.g., surface reconstruction [Sellan and Jacobson 2022]

Rendering, e.qg., light transport [Seyb et al. 2024] ~ s N

.

Boundary value problems from a statistical point of view

. e . . . . Gaussian Process _
Investigate the distribution of all possible solutions, not just a single one!

_ _ Kernel function Green’s function
Gaussian-process based inference v.s. MFS _ >
Observation Boundary condition
Conditional mean Solution

Prediction Evaluation
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Formulate stochasticity in Computer Graphics , g ”

= >

Geometry processing, e.g., surface reconstruction [Sellan and Jacobson 2022]

Rendering, e.qg., light transport [Seyb et al. 2024] ~ s N

.

Boundary value problems from a statistical point of view

. e . . . . Gaussian Process _
Investigate the distribution of all possible solutions, not just a single one!

_ _ Kernel function Green’s function
Gaussian-process based inference v.s. MFS _ N
Observation Boundary condition
Beyond conditional mean Conditi | Soluti
1 onaitional mean olution
p(f(x) |y f(y) =KxyKyy) fy), - .
Prediction Evaluation
Conditional variance for uncertainty quantification
2 _ -1 (a) boundary  (b) diffusion result  (c) conditional
O-yf = K(yl’ yl) b K(yf’ X)K(x, x) K(x, yl) . codition (conditional mean) standard deviation (d) Pr(0.3<u<1) (e) Pr(0.6<u<1)

Tell the probability of the solution falling within a given range

Uncertainty quantification of BIE solves




FUTURE WORKS @ s

Generalize the idea to ...

Asymmetric systems from elliptic PDEs or non-elliptic PDEs without

least-squares solves, e.g., wave equations [Schreck et al. 2019] _
20m

Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]




FUTURE WORKS @ s

Generalize the idea to ...

Asymmetric systems from elliptic PDEs or non-elliptic PDEs without
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Generalize the idea to ...

Asymmetric systems from elliptic PDEs or non-elliptic PDEs without

least-squares solves, e.g., wave equations [Schreck et al. 2019] h
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Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]

Strategies for further speedup

Problem-adapted FMM instead of “black-box” FMM
Faster matrix-vector product, e.g., H-matrix evaluation
Simulation meets stochasticity

Make use of uncertainty quantification for adaptive simulation

Develop stochastic representation to account for the uncertainty of a

complex dynamical system
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