

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

LIGHTNING-FAST METHOD OF FUNDAMENTAL SOLUTIONS

JIONG CHEN, INRIA FLORIAN SCHÄFER, GEORGIA TECH MATHIEU DESBRUN, INRIA / ECOLE POLYTECHNIQUE

🔀 IP PARIS

SOLVING PDES

FINITE ELEMENT METHOD (FEM)

- Generalizable to most types of PDEs
 - Linear or nonlinear PDEs
 - Homogenous or inhomogeneous coefficients
- Requires volumetric discretization
 - Large number of degrees of freedom
 - High-quality volumetric tessellation is often hard to get

[Chen et al. 2018]

BOUNDARY ELEMENT METHOD (BEM)

SOLVING PDES

FINITE ELEMENT METHOD (FEM)

- Generalizable to most types of PDEs
 - Linear or nonlinear PDEs
 - Homogenous or inhomogeneous coefficients
- Requires volumetric discretization
 - Large number of degrees of freedom
 - High-quality volumetric tessellation is often hard to get

[Chen et al. 2018]

[Bargteil et al. 2007]

BOUNDARY ELEMENT METHOD (BEM)

- Only needs boundary discretization
 - Huge reduction in dimensionality
 - Works for infinite or semi-infinite domains as well
- Limited to certain types of problems
 - Only applicable to linear and homogenous problems
 - Involves dense and often asymmetric linear systems

NUMERICAL METHODS FOR BEM

- Stochastic approaches (Walk-on-{Sphere/Star/Boundary})
 - Based on mean-value property of harmonic functions or Neumann series for $(I A)^{-1}$
 - Fast to evaluate for a single point
 - Easily integrated to rendering code base
 - Yet, slow to converge (in the square root of #paths)

[Sugimoto et al. 2023]

Miller et al. 2024]

NUMERICAL METHODS FOR BEM

Stochastic approaches (Walk-on-{Sphere/Star/Boundary})

- Based on mean-value property of harmonic functions or Neumann series for $(I A)^{-1}$
- Fast to evaluate for a single point
- Easily integrated to rendering code base
- Yet, slow to converge (in the square root of #paths)

Deterministic approaches

- Direct solvers (e.g., LU, SVD)
 - High time/memory complexity
- Iterative solvers (e.g., GMRES)
 - Slow/unguaranteed convergence

[Sugimoto et al. 2023]

Miller et al. 2024]

- Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
 - Direct approaches: solve for Dirichlet or Neumann boundary conditions
 - based on Green's third identity or its variants
 - Indirect approaches: solve for an unknown density on the boundary
 - E.g., "charges" for potential problems, "forces" for elasticity

- Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
 - Direct approaches: solve for Dirichlet or Neumann boundary conditions
 - based on Green's third identity or its variants
 - Indirect approaches: solve for an unknown density on the boundary
 - E.g., "charges" for potential problems, "forces" for elasticity
- Indirect approach: single layer potential for Dirichlet problems

- Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
 - Direct approaches: solve for Dirichlet or Neumann boundary conditions
 - based on Green's third identity or its variants
 - Indirect approaches: solve for an unknown density on the boundary
 - E.g., "charges" for potential problems, "forces" for elasticity
- Indirect approach: single layer potential for Dirichlet problems
 - Solve stage: solve for "charges" that enforce a set of given boundary "potential"

- Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
 - Direct approaches: solve for Dirichlet or Neumann boundary conditions
 - based on Green's third identity or its variants
 - Indirect approaches: solve for an unknown density on the boundary
 - E.g., "charges" for potential problems, "forces" for elasticity
- Indirect approach: single layer potential for Dirichlet problems
 - Solve stage: solve for "charges" that enforce a set of given boundary "potential"

 $\frac{\mathrm{d}v_{y}}{\mathrm{d}v_{y}}$

$$\int_{\mathcal{M}} G(\boldsymbol{z}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}} = b(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{M}.$$

• Evaluation stage: evaluate the "potential" at any target point in space

 $G(\mathbf{x}, \mathbf{y})\sigma$

- Methods to build Boundary Integral Equation (BIE) systems [Costabel 1984]
 - Direct approaches: solve for Dirichlet or Neumann boundary conditions
 - based on Green's third identity or its variants
 - Indirect approaches: solve for an unknown density on the boundary
 - E.g., "charges" for potential problems, "forces" for elasticity
- Indirect approach: single layer potential for Dirichlet problems
 - Solve stage: solve for "charges" that enforce a set of given boundary "potential"

 $\int_{\mathcal{M}} G(\boldsymbol{z}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}} = b(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{M}.$

• Evaluation stage: evaluate the "potential" at any target point in space

$$u(\boldsymbol{x}) = \int_{\mathcal{M}} G(\boldsymbol{x}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}}.$$

- Results in *Fredholm integral equation of the first kind*, more
 Ill-posed than the *second kind*
- Need efficient preconditioners
- Any symmetric and sparse structures to leverage to get a stable and scalable solver?

Discretize boundary integral equations (BIE)

$$\int_{\mathcal{M}} G(\boldsymbol{z}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}} = b(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{M}.$$

Discretize boundary integral equations (BIE)

$$K s = b$$

Discretize boundary integral equations (BIE)

$$\int_{\mathcal{M}} G(z, y) \sigma(y) \, dv_y = b(z) \quad \forall z \in \mathcal{M}.$$

$$\sum_{j=1}^{S} \left(\iint_{\mathcal{M} \times \mathcal{M}} \phi_i(y) G(y, z) \psi_j(z) \, dv_y dv_z \right) s_j = \int_{\mathcal{M}} b(y) \phi_i(y) dv_y$$
Discretize boundary data $b(z) = \sum_i \psi_i(z) b_i$
Discretize sources $\sigma(y) = \sum_i \phi_i(y) s_i$
boundary points

- To obtain a symmetric discrete BIE
 - Either identical basis functions for collocated source and boundary points
 - Or solve least-squares problem $K^T K s = K^T b$

K s = h

Discretize boundary integral equations (BIE)

$$\int_{\mathcal{M}} G(\boldsymbol{z}, \boldsymbol{y}) \sigma(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}} = b(\boldsymbol{z}) \ \forall \boldsymbol{z} \in \mathcal{M}.$$

Discretize boundary data $b(z) = \sum_i \psi_i(z) b_i$

Discretize sources $\sigma(y) = \sum_j \phi_j(y) s_j$

- To obtain a symmetric discrete BIE
 - Either identical basis functions for collocated source and boundary points
 - Or solve least-squares problem $K^T K s = K^T b$
 - e.g., Fredholm integral equations of the second kind
 - Double-layer potential for Dirichlet problems
 - Single-layer potential for Neumann problems

$$\int \int_{\mathcal{M} \times \mathcal{M}} \phi_i(\boldsymbol{y}) G(\boldsymbol{y}, \boldsymbol{z}) \psi_j(\boldsymbol{z}) \, \mathrm{d} v_{\boldsymbol{y}} \, \mathrm{d} v_{\boldsymbol{z}} \bigg) s_j = \int_{\mathcal{M}} b(\boldsymbol{y}) \phi_i(\boldsymbol{y}) \, \mathrm{d} v_{\boldsymbol{y}}$$

K s = b

EXPLOIT SPARSITY

- Directly applying incomplete Cholesky to factorize K
 [Chen et al. 2021]
 - Accuracy issue: Numerous entries must be dropped out for efficiency
 - Stability issue: Loss of positive definiteness causes breakdowns

Ks = b

 $K \approx LL^T$

EXPLOIT SPARSITY

- Directly applying incomplete Cholesky to factorize *K* [Chen et al. 2021]
 - Accuracy issue: Numerous entries must be dropped out for efficiency
 - Stability issue: Loss of positive definiteness causes breakdowns
- However, boundary integral operators are conceptually close to the inverse of their differential operator
 - Green function is the solution subject to a singular impulse
 - E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance

Compliance Ks = bForces Displacements

 $K \approx LL^T$

EXPLOIT SPARSITY

- Directly applying incomplete Cholesky to factorize K
 [Chen et al. 2021]
 - Accuracy issue: Numerous entries must be dropped out for efficiency
 - Stability issue: Loss of positive definiteness causes breakdowns
- However, boundary integral operators are conceptually close to the inverse of their differential operator
 - Green function is the solution subject to a singular impulse
 - E.g., in elasticity, a BIE matrix acts like the inverse of stiffness, or compliance
- So, the inverse of BIE matrices could be sparse
 - True for many covariance matrices assembled by fast-decaying kernel functions in Gaussian Process
 - Similar for Green's functions as well

 $K \approx LL^T$

[Chow and Saad 2014]

We leverage inverse Cholesky factorization to precondition BIE matrices

$$K^{-1} \approx L_S L_S^T$$

• We leverage inverse Cholesky factorization to precondition BIE matrices

$$Ks = b - \frac{K^{-1} \approx L_S L_S^T}{s} \Rightarrow s \approx L_S L_S^T b$$

We leverage inverse Cholesky factorization to precondition BIE matrices

$$Ks = b - \frac{K^{-1} \approx L_S L_S^T}{s} \Rightarrow s \approx L_S L_S^T b$$

Kaporin's construction for L_S [Kaporin 1994]

$$\boldsymbol{L}_{\mathcal{S}_{j},j} = \frac{\boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}{\sqrt{\boldsymbol{e}_{j}^{\mathsf{T}} \boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}}, \quad \forall j = 1..B,$$

$$L_S$$

We leverage inverse Cholesky factorization to precondition BIE matrices

$$Ks = b - \frac{K^{-1} \approx L_S L_S^T}{s} \Rightarrow s \approx L_S L_S^T b$$

Kaporin's construction for L_S [Kaporin 1994]

$$L_{\mathcal{S}_{j},j} = \frac{K_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}{\sqrt{\mathbb{e}_{j}^{\mathsf{T}} K_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}}, \quad \forall j = 1..B,$$

We leverage inverse Cholesky factorization to precondition BIE matrices

$$Ks = b - \frac{K^{-1} \approx L_S L_S^T}{s} \Rightarrow s \approx L_S L_S^T b$$

Kaporin's construction for L_S [Kaporin 1994]

$$L_{\mathcal{S}_{j},j} = \frac{K_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}{\sqrt{\mathbb{e}_{j}^{\mathsf{T}} K_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}}, \quad \forall j = 1..B,$$

tr(M

 $\kappa_{\mathrm{Kap}}(M) =$

We leverage inverse Cholesky factorization to precondition BIE matrices

$$Ks = b - \frac{K^{-1} \approx L_S L_S^T}{s} \Rightarrow s \approx L_S L_S^T b$$

$$\boldsymbol{L}_{\mathcal{S}_{j},j} = \frac{\boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{\mathbb{e}}_{j}}{\sqrt{\boldsymbol{\mathbb{e}}_{j}^{\mathsf{T}} \boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{\mathbb{e}}_{j}}}, \quad \forall j = 1..B,$$

- Properties
 - **Massively parallel:** each column of L_S is computed independently to others. Good for GPUs!
 - **Memory efficient:** no need to assemble the global BIE matrix.
 - Stable: no breakdowns will occur
 - Variational interpretation(s): minimizing Kaporin's condition number*, KL-divergence, and a constrained quadratic form

OVERVIEW

	Precompute (CPU) Needs boundary meshes or just points	
Compute (GPU)	Solve (GPU+CPU)	Evaluate (CPU)
Needs PDEs and	Needs boundary	Needs interpolate/extrapolation
associated Green function	conditions	points

OVERVIEW

REORDERING DOFS

- Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]
 - Max-min ordering $i_k = \underset{q}{\operatorname{argmax}} \min_{p \in \{0,k-1\}} \operatorname{dist}(\boldsymbol{y}_q, \boldsymbol{y}_{i_p}),$
 - Reverse max-min ordering $P = \{i_{B-1}, ..., i_1, i_0\}$, i.e., fine-to-coarse

A fine-to-coarse reordering

REORDERING DOFS

- Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]
 - Max-min ordering $i_k = \underset{q}{\operatorname{argmax}} \min_{p \in \{0,k-1\}} \operatorname{dist}(\boldsymbol{y}_q, \boldsymbol{y}_{i_p}),$
 - Reverse max-min ordering $P = \{i_{B-1}, ..., i_1, i_0\}$, i.e., fine-to-coarse
- Intuition
 - Make sampling points space uniformly within each scale
 - The screening effect in kriging [Stein 2002]

A fine-to-coarse reordering

REORDERING DOFS

- Fine-to-coarse ordering by farthest point sampling [Chen et al. 2021]
 - Max-min ordering $i_k = \underset{q}{\operatorname{argmax}} \min_{p \in \{0,k-1\}} \operatorname{dist}(\boldsymbol{y}_q, \boldsymbol{y}_{i_p}),$
 - Reverse max-min ordering $P = \{i_{B-1}, ..., i_1, i_0\}$, i.e., fine-to-coarse
- Intuition
 - Make sampling points space uniformly within each scale
 - The screening effect in kriging [Stein 2002]
 - GP: conditioning a subset of points results in localized correlations

A fine-to-coarse reordering

 $f(A, B, C, D) = f(A)f(B|A)f(C|A, B)f(D|A, B, C) = N(0, \Sigma)$ $f(A, B, C, D) \approx f(A)f(B|A)f(C|A, R)f(D|A, B, R) = N(0, (LL^{T})^{-1})$ Too far Too far

Length scale returned in coarse-to-fine ordering

$$\ell_{i_k} = \min_{p \in \{0, k-1\}} \operatorname{dist}(\boldsymbol{y}_{i_k}, \boldsymbol{y}_{i_p})$$

Length scale returned in coarse-to-fine ordering

$$\ell_{i_k} = \min_{p \in \{0, k-1\}} \operatorname{dist}(\boldsymbol{y}_{i_k}, \boldsymbol{y}_{i_p})$$

Lower-triangular sparsity patter

$$S := \{(i, j) | i \ge j \text{ and } \operatorname{dist}(x_i, x_j) \le \rho \min(\ell_i, \ell_j) \}$$

Again, screening effect: a fine-scale point is unlikely to be correlated to distant points on coarser scales

Length scale returned in coarse-to-fine ordering

$$\ell_{i_k} = \min_{p \in \{0, k-1\}} \operatorname{dist}(\boldsymbol{y}_{i_k}, \boldsymbol{y}_{i_p})$$

Lower-triangular sparsity patter

$$S := \{(i, j) | i \ge j \text{ and } \operatorname{dist}(x_i, x_j) \le \rho \min(\ell_i, \ell_j) \}$$

Again, screening effect: a fine-scale point is unlikely to be correlated to distant points on coarser scales

Length scale returned in coarse-to-fine ordering

$$\ell_{i_k} = \min_{p \in \{0, k-1\}} \operatorname{dist}(\boldsymbol{y}_{i_k}, \boldsymbol{y}_{i_p})$$

Lower-triangular sparsity patter

$$S := \{(i, j) | i \ge j \text{ and } \operatorname{dist}(x_i, x_j) \le \rho \min(\ell_i, \ell_j) \}$$

 Again, screening effect: a fine-scale point is unlikely to be correlated to distant points on coarser scales

EFFICIENT IMPLEMENTATION

FOR PRECONDTIONER

FOR PCG ITERATIONS

EFFICIENT IMPLEMENTATION

FOR PRECONDTIONER

• Supernode mode to reuse local factorizations as much as possible

Supernodal sparsity pattern

Merge j, k into a single super node $j, k \in J$

FOR PCG ITERATIONS

EFFICIENT IMPLEMENTATION

FOR PRECONDTIONER

Supernode mode to reuse local factorizations as much as possible

FOR PCG ITERATIONS

 Fast Multipole Method to evaluate matrix-vector products

EXAMPLES OF APPLICATION

LAPLACE'S EQUATIONLINEAR ELASTICITYHELMHOLTZ EQUATION $\Delta u = 0$ $\Delta u + \frac{1}{1-2v} \nabla (\nabla \cdot u) = 0,$ $\Delta u + k^2 u = 0,$ $G(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2\pi} \ln(r), & \text{in 2D} \\ \frac{1}{4\pi r}, & \text{in 3D} \end{cases}$ $G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{a-b}{r} \ln(1/r)I + \frac{b}{r^2}rr^T, & \text{in 2D} \\ \frac{a-b}{r}I + \frac{b}{r^3}rr^T, & \text{in 3D} \end{cases}$ $G(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{1}{4}H_0^{(1)}(kr), & \text{in 2D}, \\ \frac{a-b}{r}I + \frac{b}{r^3}rr^T, & \text{in 3D} \end{cases}$

EXAMPLES OF APPLICATION

The method of fundamental solutions (MFS)

LINEAR ELASTICITY

 $\rho = 3$

 $\rho = 3$

#iter. = 10 t (pcg) = 7.270s t (eval.) = 11.686s Err = 0.003106

t(precomp.) = 0.132s

t(comp.) = 0.644s

sources (box): 14408 # target (car): 199249

Constrained Kelvinlet deformer [de Goes and James 2017]

t (precomp.) = 0.138s t (comp.) = 0.631s t (reval.) = 10.542s t (eval.) = 10.542s t r = 0.001526

LINEAR ELASTICITY

 $\rho = 3$

#iter. = 10 t (pcg) = 7.270s t (eval.) = 11.686s Err = 0.003106

t(precomp.) = 0.132s

t(comp.) = 0.644s

sources (box): 14408 # target (car): 199249

Constrained Kelvinlet deformer [de Goes and James 2017]

- Least-squares solves are always needed for Helmholtz equations
 - The BIE/MFS matrices are complex symmetric, but not Hermitian

- Least-squares solves are always needed for Helmholtz equations
 - The BIE/MFS matrices are complex symmetric, but not Hermitian
 - Cholesky factorization does no exist

- Least-squares solves are always needed for Helmholtz equations
 - The BIE/MFS matrices are complex symmetric, but not Hermitian
 - Cholesky factorization does no exist

COMPARISON WITH SVD

Boundary size

	SVD		Ours						
В									
	t(fac.)	t(slv.)	<i>t</i> (precomp.)	t(comp.)	#iters	t(pcg)	t(total)	Err	
1280	4.864	0.003	0.004	0.419	15	0.005	0.427	0.000706	
2560	33.757	0.011	0.007	0.715	15	0.013	0.735	0.000679	
5120	261.454	0.045	0.013	1.270	15	0.048	1.331	0.004405	
7680	911.212	0.156	0.023	3.478	15	0.099	3.600	0.003497	
10240	2405.59	0.303	0.032	7.170	15	0.167	7.369	0.003665	

COMPARISON WITH SVD

Boundary size

R	SVD		Ours					
D	t(fac.)	t(slv.)	<i>t</i> (precomp.)	<i>t</i> (comp.)	#iters	t(pcg)	<i>t</i> (total)	Err
1280	4.864	0.003	0.004	0.419	15	0.005	0.427	0.000706
2560	33.757	0.011	0.007	0.715	15	0.013	0.735	0.000679
5120	261.454	0.045	0.013	1.270	15	0.048	1.331	0.004405
7680	911.212	0.156	0.023	3.478	15	0.099	3.600	0.003497
10240	2405.59	0.303	0.032	7.170	15	0.167	7.369	0.003665

18

Formulate stochasticity in Computer Graphics

- Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]
- Rendering, e.g., light transport [Seyb et al. 2024]

18

- Formulate stochasticity in Computer Graphics
 - Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]
 - Rendering, e.g., light transport [Seyb et al. 2024]
- Boundary value problems from a statistical point of view
 - Investigate the distribution of all possible solutions, not just a single one!

18

- Formulate stochasticity in Computer Graphics
 - Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]
 - Rendering, e.g., light transport [Seyb et al. 2024]
- Boundary value problems from a statistical point of view
 - Investigate the distribution of all possible solutions, not just a single one!
- Gaussian-process based inference *v.s.* MFS

Gaussian Process	MFS
Kernel function	Green's function
Observation	Boundary condition
Conditional mean	Solution
Prediction	Evaluation

- Formulate stochasticity in Computer Graphics
 - Geometry processing, e.g., surface reconstruction [Sellán and Jacobson 2022]
 - Rendering, e.g., light transport [Seyb et al. 2024]
- Boundary value problems from a statistical point of view
 - Investigate the distribution of all possible solutions, not just a single one!
- Gaussian-process based inference v.s. MFS
 - Beyond conditional mean
 - $\mu(f(\boldsymbol{x}) \mid \boldsymbol{y}, f(\boldsymbol{y})) = \boldsymbol{K}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{K}(\boldsymbol{y}, \boldsymbol{y})^{-1} f(\boldsymbol{y}),$
 - Conditional variance for uncertainty quantification

 $\sigma_{\boldsymbol{y}_i}^2 = K(\boldsymbol{y}_i, \boldsymbol{y}_i) - K(\boldsymbol{y}_i, \boldsymbol{x})K(\boldsymbol{x}, \boldsymbol{x})^{-1}K(\boldsymbol{x}, \boldsymbol{y}_i).$

Tell the probability of the solution falling within a given range

Gaussian Process	MFS
Kernel function	Green's function
Observation	Boundary condition
Conditional mean	Solution
Prediction	Evaluation

(a) boundary

Uncertainty quantification of BIE solves

FUTURE WORKS

- Generalize the idea to ...
 - Asymmetric systems from elliptic PDEs or non-elliptic PDEs without least-squares solves, e.g., wave equations [Schreck et al. 2019]
 - Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]

FUTURE WORKS

- Generalize the idea to ...
 - Asymmetric systems from elliptic PDEs or non-elliptic PDEs without least-squares solves, e.g., wave equations [Schreck et al. 2019]
 - Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]
- Strategies for further speedup
 - Problem-adapted FMM instead of "black-box" FMM
 - Faster matrix-vector product, e.g., H-matrix evaluation

FUTURE WORKS

- Generalize the idea to ...
 - Asymmetric systems from elliptic PDEs or non-elliptic PDEs without least-squares solves, e.g., wave equations [Schreck et al. 2019]
 - Nonlinear problems, e.g., Gaussian process hydrodynamics [Owhadi 2023]
- Strategies for further speedup
 - Problem-adapted FMM instead of "black-box" FMM
 - Faster matrix-vector product, e.g., H-matrix evaluation
- Simulation meets stochasticity
 - Make use of uncertainty quantification for adaptive simulation
 - Develop stochastic representation to account for the uncertainty of a complex dynamical system

0 0

SIGGRAPH 2024 DENVER+ 28 JUL - 1 AUG

100000000000000

THANKS!