
Lightning-fast Method of Fundamental Solutions
JIONG CHEN, Inria, France
FLORIAN SCHÄFER, Georgia Institute of Technology, USA
MATHIEU DESBRUN, Inria / Ecole Polytechnique, France

Fig. 1. Speeding up the method of fundamental solutions. As our work allows for lightning-fast solving of dense linear equations from MFS and BEM
through an efficient inverse-Cholesky preconditioner, boundary-type methods can now be leveraged to handle large-scale 3D problems as this illustrative scene
demonstrates, with Laplace’s equation (radiating colors from the tower), linear elasticity (e.g., deforming eagles through manipulating boxes), and Helmholtz
equation (scattering of input waves on islands), each of these examples involving from 10𝐾 to 200𝐾 degrees of freedom, computed on a laptop.

The method of fundamental solutions (MFS) and its associated boundary

element method (BEM) have gained popularity in computer graphics due to

the reduced dimensionality they offer: for three-dimensional linear problems,

they only require variables on the domain boundary to solve and evaluate

the solution throughout space, making them a valuable tool in a wide variety

of applications. However, MFS and BEM have poor computational scala-

bility and huge memory requirements for large-scale problems, limiting

their applicability and efficiency in practice. By leveraging connections with

Gaussian Processes and exploiting the sparse structure of the inverses of

boundary integral matrices, we introduce a variational preconditioner that

can be computed via a sparse inverse-Cholesky factorization in a massively
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parallel manner. We show that applying our preconditioner to the Precon-

ditioned Conjugate Gradient algorithm greatly improves the efficiency of

MFS or BEM solves, up to four orders of magnitude in our series of tests.
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1 INTRODUCTION
When dealing with a linear partial differential equation (PDE) with

imposed values on the boundary of a domain Ω ⊂ R3

, the use of

the Method of Fundamental Solutions (MFS) or of the Boundary

Element Method (BEM), both based on the Green’s function of the

linear operator involved in the PDE, provides a way to solve the

PDE with only surface-based degrees of freedom (DoFs) — instead of

performing both a volumetric discretization of the 3D domain and

the associated much-larger linear solve. Therefore, this “boundary

integral” approach dramatically diminishes the dimensionality of the
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problem and removes the pain of generating a fine volumetric mesh.

Consequently, it has been used to approach a series of Computer

Graphics (CG) problems with smaller counts of variables to solve,

from elasticity [James and Pai 1999] and digital sculpting [De Goes

and James 2017], to diffusion curves [Bang et al. 2023] and water

waves [Schreck et al. 2019].

However, the resulting smaller matrices involved in the Boundary

Integral Equations (BIE) from either BEM or MFS are fully populated
and ill-conditioned after discretization of the boundary, posing sig-

nificant challenges for direct solvers: just assembling all the entries

of the dense matrix of the BIE can quickly fill up memory for large

scale problems; worse, the cubic complexity of factorizing this dense

matrix often renders direct solves impractical even for problems

of moderate sizes. Iterative solvers do not face an easier situation

either: the condition number of the BIE matrix often deteriorates as

the number of DoFs increases. Even for symmetric positive-definite

matrices, Conjugate Gradient (CG) solvers are at times dramatically

slow to reach a low-enough error norm for large problems, while

asymmetric BIE matrices require GMRES or BiStabCG-based solves

which might even fail to converge due to a lack of guarantees for

such matrices. As the dense nature of BIE matrices imposes high

memory requirements and computational efforts in practice, sto-

chastic approaches have gained popularity recently due to their

grid-free nature and avoidance of global solves [Sawhney and Crane

2020; Sawhney et al. 2022; Sugimoto et al. 2023]: these Monte-Carlo

methods are able to provide a quick preview of the solution point-
wise and are arguably the only methods currently available to deal

with problems with hundreds of thousands of DoFs. Yet, their slow

convergence rate and redundancy in pointwise evaluations limit

their applicability in graphics and simulation tasks for which evalu-

ation of the solution is needed throughout the domain and accuracy

is paramount, leaving only MFS and BEM as viable alternatives

despite their inability to scale well.

This long-standing numerical difficulty is, in a sense, antithetical

to the oft-observed problems in solving linear systems coming from

the discretization of a linear differential equation: the latter involves

larger-sized matrices (induced by a volume discretization) that are

sparse (due to locality of derivatives) and for which a large variety

of efficient preconditioners have been proposed [Zhu et al. 2010;

Krishnan and Szeliski 2011; Chen et al. 2021b; Wu et al. 2022; Shao

et al. 2022]. As mentioned above, Green’s functions (i.e., solutions

of the differential equation subject to a singularity load) allow us

to write much more compact linear systems involving only bound-

ary variables; but this time, the resulting matrices are dense. So
traditional numerical preconditioning methods designed for sparse

differential operators (such as multigrid, incomplete LU, or Cholesky

factorization) are ineffective in this context.

Contributions. In this paper, we take inspiration from recent re-

sults in Gaussian Processes (whose covariance matrices share sim-

ilarities with BIE matrices) to propose an efficient preconditioner

for Boundary Integral Equations of the type 𝑲𝒔=𝒃 for dense, posi-

tive, and symmetric matrices 𝑲 . We explain the roots of our varia-

tional multiscale massively-parallel preconditioner which consists

in minimizing, for the resulting preconditioned matrix, the so-called

Kaporin condition number, a variant of the traditional condition

number that better predicts the number of preconditioned Conju-

gate Gradient iterations necessary to reach convergence. In prac-

tice, preconditioning is achieved by computing a sparse inverse-

Cholesky factor of 𝑲 in a massively-parallel way, followed by two

sparse matrix-vector products per CG iteration (instead of back-

substitutions in traditional incomplete Cholesky preconditioners)

which thus involves a marginal overhead compared to the cost of

a standard CG iteration — but drastically reducing the number of

iterations needed to converge. We show that in various graphics

applications, our preconditioner significantly accelerates BIE solves

(we demonstrate more than four orders of magnitude for complex

and large-scale problems), thus unlocking the scalability issue of the

method of fundamental solutions. Finally, we discuss how the link

between our contribution and Gaussian Processes provides direct

uncertainty quantification of the results.

2 BACKGROUND AND RELATED WORKS
We begin our exposition with a brief review of MFS and BEM, before

mentioning some of the practical CG applications that adopted these

approaches and discussing the numerical efforts that have been

proposed to speed up their solves.

2.1 Continuous roots of MFS/BEM
Suppose we want to find the function 𝑢 in a domain Ω ⊂R3

satis-

fying a partial differential equation (PDE) of the form L𝑢 (𝑥) = 0

where L is a linear operator, for Dirichlet boundary conditions

𝑢 (𝒚) |M = 𝑏 (𝒚) whereM is a (closed or open) 2-manifold within

Ω, and 𝑏 (·) is a given function overM that the solution 𝑢 must

match. Further, suppose we know the Green’s functions 𝐺 (𝑥,𝒚) of
L representing a solution of the PDE subject to a singularity load

at point 𝒚, i.e., satisfying L𝐺 (𝑥,𝒚) = 𝛿 (𝑥,𝒚) where 𝛿 (𝑥,𝒚) is the
Dirac delta function. With the Green’s functions of our linear PDE,

we can solve for 𝑢 via an integral equation onM rather than on the

whole domain Ω due to the superposition principle, since the sum

of multiple solutions of the PDE is still, itself, a solution. So we seek

a density 𝜎 of singularity loads overM such that the integral of

all the Green’s functions at any point onM precisely matches the

boundary conditions in order to get the correct solution, i.e., one

has to find the density 𝜎 such that:∫
M
𝐺 (𝒚, 𝑧)𝜎 (𝑧) d𝜈𝑧 = 𝑏 (𝒚) ∀𝒚 ∈ M . (1)

Once the density satisfying Eq. (1) (called the “boundary integral

equation”, BIE for short) is found, then the solution 𝑢 at any point 𝑥

in Ω can be expressed through a simple evaluation of the infinite

sum of Green’s functions through:

𝑢 (𝑥) =
∫
M
𝐺 (𝑥, 𝑧)𝜎 (𝑧) d𝜈𝑧 . (2)

In other words, we solve a 3D problem via a two-step approach, where
we need to find the solution to a fundamentally 2D problem — the

BIE— before proceeding to the evaluation of the solution anywhere

efficaciously. Notice that we used a Dirichlet problem above, but

the same applies to Neumann boundary conditions, leading still to

a boundary integral equation and an evaluation equation, but with

altered expressions as they will now involve normal derivatives

of the Green’s function. Consequently, the integral formulations
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Fig. 2. Large-scale pixel diffusion. Here we use 1.35𝑀 boundary points and 8.4𝑀 target points, for a final image resolution of 6957×1207. Our algorithm only
requires 9GB of memory to store 𝑲S𝑗 ,S𝑗 and 𝑳S for a sparsity parameter 𝜌 =6. Timings for precomputation, assembly plus factorization for preconditioning,
and PCG solve (for three channels) are resp. 112.4s, 11.3s, and 1775.8s, respectively. Only 9 PCG iterations were needed to achieve a relative error of around
0.01 for each color channel. Lastly, FMM takes 1049s to diffuse the colors in the final evaluation. Without our preconditioner, solving such a BIE would be
extremely time-consuming and may not be able to even reach such a low error with a conventional preconditioner.

above are useful in many contexts. For instance, in elasticity, if

the boundary function 𝑏 represents the displacement field of the

boundaryM of a homogeneous body, the density 𝜎 satisfying Eq. (1)

will represent the traction at the boundary, which then allows us

to evaluate the displacements insideM via Eq. (2); similarly for

electrostatics, where a density 𝜎 of point charges alongM matching

an input boundary electrostatic potential are enough to reconstruct

the full potential field over the whole domain Ω.

2.2 Discretizing the BIE
In practice, we only have boundary points {𝒚𝑖 }𝑖=1..𝐵 onM which

encode the (pointwise sampled or locally integrated) boundary con-

ditions, and a(n often larger) set of target points {𝑥𝑖 }𝑖=1..𝑇 in Ω
where the solution needs to be evaluated. For computational pur-

poses, the boundary integrals above have to be discretized, so we

also add source points {𝑧𝑖 }𝑖=1..𝑆 carrying a set of values {𝑠𝑖 }𝑖
representing the density function 𝜎 overM.

Boundary Element Method. The BEM approach to formulate the

discrete boundary integral equations assumes that the boundary

points are part of a triangle mesh discretizing the surfaceM, and

so are the source points. Using for instance linear basis functions

associated with each vertex (say, 𝜙𝑖 for 𝒚𝑖 , 𝜓𝑖 for 𝑧𝑖 ), a Galerkin

finite-element discretization which writes the boundary function as

𝑏 (𝒚)=∑𝑖 𝑏𝑖𝜙𝑖 (𝒚) with 𝑏𝑖 =𝑏 (𝒚𝑖 ) leads to a BIE of the form:

𝑆∑︁
𝑗=1

(∬
M×M

𝜙𝑖 (𝒚)𝐺 (𝒚, 𝑧)𝜓 𝑗 (𝑧) d𝜈𝒚d𝜈𝑧

)
𝑠 𝑗 =

∫
M
𝑏 (𝒚)𝜙𝑖 (𝒚)d𝜈𝒚 ∀𝑖 . (3)

Once the integrals in Eq. (3) are precomputed through careful quadra-

tures [Duffy 1982], we do get a linear system (which we also call the

BIE) of size 𝐵 × 𝑆 , basically linking the unknown discrete source

strengths {𝑠 𝑗 } 𝑗 to the known boundary values {𝑏𝑖 }𝑖 . Be aware that
this short summary of BEM is far from complete as there are multi-

ple variants of BEM depending on the continuity of the solution or

its derivatives acrossM: we only explained the derivation of the

“single-layer BEM for Dirichlet problems”, but similar approaches

can deal with the Neumann case, or even the “double-layer BEM”

for Dirichlet or Neumann problems [Costabel 1987]. In our work,

one only needs to know that any of these discretizations leads to

a dense linear system to solve, involving Green’s functions and/or

their derivatives.

Method of Fundamental Solutions. The MFS can be easily ex-

plained at this point by revisiting the BEM derivation, and taking

both the basis functions 𝜙𝑖 and 𝜓 𝑗 to be delta Dirac functions in

Eq. (3); then the BIE simplifies down to a linear system too:∑︁𝑆

𝑗=1

𝐺 (𝒚𝑖 , 𝑧 𝑗 ) 𝑠 𝑗 = 𝑏𝑖 . ∀𝑖 = 1..𝐵 (4)

Note that in this case, one does not even need a mesh: the point

samples are enough. This simplicity of derivation has made this

approach quite common in CG.

Generic BIE. As we have seen, there are various ways to derive
the discrete notion of BIE. Whether the final (discrete) BIE to solve

was derived through BEM or MFS, we will always denote it as

𝑲𝒔 = 𝒃 (5)
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where 𝑲 is a dense matrix of size 𝐵×𝑆 , 𝒔 is the vector of all sources’
strength 𝑠 𝑗 to solve for, and 𝒃 is the vector of all the given boundary

values𝑏𝑖 .Our paper focuses on how to solve this BIE efficiently through
a few iterations of a Preconditioned Conjugate Gradient algorithm.

Further Assumptions. Because we aim at applications in CG, we

will consider the matrix 𝑲 to be symmetric, as numerical solvers

are typically more efficient in this case. This may be seen as a

restriction: indeed, in the explanations we provided above, only

the MFS-based BIE in Eq. (4) seems symmetric when the Green’s

functions are symmetric (which is always the case for isotropic cases)

and the source samples and boundary samples are one and the same.

However, it can be shown that the BEM-Dirichlet approach using

single-layer potential from Eq. (3) does also lead to a symmetric

BIE matrix when not only source samples and boundary samples

coincide, but when their basis functions are the same as well — and

the BEM-Neumann approach using double-layer potential which

involves the second derivatives 𝜕
2

𝐺 (𝑥,𝒚)/𝜕𝑛(𝑥)𝜕𝑛(𝒚) of Green’s
functions, also results in a symmetric matrix in this case. For all

other cases, 𝑲 may not be symmetric, but one can still use a least-

squares solution by solving (𝑲 T𝑲 )𝒔= (𝑲 T𝒃); so our generic Eq. (5)

remains valid, where now 𝑲 possibly comes from an inner product

of Green’s functions. We will thus assume in the remainder of this

paper that boundary and source points are the same (𝒚𝑖 ≡𝑧𝑖 ), and
that our matrix 𝑲 is of size 𝐵×𝐵.

Since 𝑲 derives from BEM/MFS, it will also typically be positive-
semidefinite (PSD). Even if it is not the case when using, for instance,

the Green’s functions of the Helmholtz equation (which we will

cover in Sec. 4.4), its least-squares version 𝑲 T𝑲 will be PSD.

Additionally, a typical issue with Green’s functions 𝐺 (𝑥,𝒚) is its
singularity when 𝑥 =𝒚: the diagonal of matrix 𝑲 may therefore have

undefined terms involving𝐺 (𝒚𝑖 ,𝒚𝑖 ). A typical approach to deal with

this issue is to “regularize” the Green’s functions. This is achieved

by either finding a singularity-free function 𝐺
𝜀 (·, ·) such that L𝐺𝜀

is a smoothed-out Dirac functions [Cortez 2001], or by defining

𝐺
𝜀
to match 𝐺 almost everywhere except in a small disk of radius

𝜀≪1 around the singularity to remove it. Another known approach

is to avoid regularizing by slightly offsetting the source points so

that they are not exactly on top of the boundary points; but this

common approach renders the matrix asymmetric, hence requiring

a least-squares solve or an ad-hoc solver. So we will assume that

regularized Green’s functions 𝐺
𝜀
are used in this paper.

2.3 Evaluating the solution
In our discrete setup, once the source values {𝑠𝑖 }𝑖 are solved from

the BIE (Eq. (5)), we can finally evaluate the solution values at

each target point 𝑥𝑘 , through a simple matrix-vector multiplication

basically: for MFS, one simply evaluates

𝑢 (𝑥𝑘 ) =
𝑆∑︁
𝑗=1

𝐺 (𝑥𝑘 ,𝒚 𝑗 ) 𝑠 𝑗 ∀𝑘 = 1..𝑇 . (6)

This is just an evaluation, not a solve, but its computation can still

be quite costly as, typically, none of the 𝐺 (𝑥𝑘 ,𝒚 𝑗 ) terms are zero.

However, due to the usual fast decay of Green’s functions, this

evaluation can be achieved very efficiently via the Fast Multipole

Method (FMM) algorithm [Greengard and Rokhlin 1987], which

drastically reduces the complexity of this large summation via an

adaptive evaluation. One can also leverage an algebraic version of

FMM in which the matrix 𝑲 is partitioned, then approximated via

a hierarchical matrix (or H -matrix [Hackbusch 1999; Hackbusch

and Khoromskij 2000]) via blockwise low-rank submatrices so as to

accelerate matrix-vector multiplications.

2.4 Related Works in CG
Many graphics papers have leveraged the dimensionality reduc-

tion in the size of the variable count (and thus, of the matrix solve)

that BEM, MFS, or even just Green’s functions bring. In the case of

animation, fast approaches to simulate deformable bodies [James

and Pai 1999; Sugimoto et al. 2022], fluid [Da et al. 2016], or even

ferrofluids [Huang and Michels 2020] have leveraged BEM on tri-

angle meshes to accelerate computations. MFS was exploited in

the case of wave animation [Schreck et al. 2019], polyhedral finite

elements for elasticity [Martin et al. 2008], acoustics [James et al.

2006], as well as various pointset reconstruction methods [Carr

et al. 2001; Zhong et al. 2019], while Green’s functions (and MFS

as well if boundary constraints are added) were key to the inter-

active sculpting work of De Goes and James [2017]. Various linear

solvers were used to solve the BIE, typically Singular Value Decom-

position (see, e.g., [Schreck et al. 2019]) or GMRES (see, e.g., [Bang

et al. 2023]), while recent works have all adopted some form of

FMM-based evaluation technique due to its broad applicability and

efficacy (see, e.g., [Zhong et al. 2019; Bang et al. 2023]). However,

we note that most resulting BIEs are overconstrained, as authors
prefer to reduce the number of sources (and thus, only approximate
the boundary conditions instead of fitting them exactly) so as to

offer a faster solve: indeed, if a FMM evaluation is used, the remain-
ing bottleneck to a wider use of MFS/BEM methods is the BIE solve,
which is currently prohibitively expensive for very large matrices

(i.e., of cubic complexity for direct solvers). Our work shows that

having boundary and source points to be coinciding can be actually

more efficient than just skimping on source points if the underlying
structure of the matrix 𝑲 (which is, in a sense, the inverse of the

sparse linear matrix representing the linear operator of the PDE) is

properly exploited. And while recent works never use more than

16, 000 sources to guarantee acceptable timings, we will show how

to scale a BIE solve up to millions of degrees of freedom.

2.5 Related works in preconditioning
Relative to the amount of work on preconditioning large sparse

linear systems, there has been only a few contributions which tried

to precondition BIE linear systems (i.e., involving dense, symmetric,

and positive semi-definite matrices). Early works include [Steinbach

and Wendland 1998] based on basis transformation and [Schippers

1985] which proposed to customize multigrid-based preconditioning

methods for a few specific applications to efficiently solve BIE-like

linear systems based on a case-by-case decomposition of the matrix

𝑲 into two matrices and the use of quadrature evaluations to derive

a relaxation scheme making the multigrid preconditioner efficient.

When an H -matrix is used for fast matrix-vector multiplication,

preconditioning of the BIE matrix can be achieved more efficiently

through LU factorization [Kriemann 2013] or through a nested

GMRES-based construction [Amlani et al. 2019], with performance
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improvements reported to be around a factor two; however, the

precision of low-rank approximations used in an H -matrix can

notably limit efficiency, while pursing higher accuracy weakens the

benefits of hierarchical matrices — thus requiring parameter tuning

to achieve good results. Another BIE preconditioner was proposed

in [Beatson et al. 1999], especially designed for RBF fitting.

Our approach, however, is general and can be applied to most

PDEs (e.g., elliptic or parabolic, but even for some non-local partial

derivative equations, as long as the Green’s function decays rapidly).

Our numerical method takes advantage of recent developments in

Gaussian processes (GP), where the covariance matrices used in

GP statistics are, in fact, the equivalent of the Green-derived ma-

trices in our context. Early work by Vecchia [1988] approximated

the likelihood function of a Gaussian distribution via a product of

univariate conditional densities, each depending on a subset of the

previously ordered variables. This was later observed to be equiva-

lent to computing an approximate inverse-Cholesky factor of the

covariance matrix [Katzfuss and Guinness 2021]; independently,

Kaporin [1994] derived a closed-form expression of the approximate

inverse-Cholesky preconditioner of a sparse matrix that minimizes,

subject to sparsity constraints, a particular notion of condition num-

ber of the preconditioned system. Kaporin’s approach turned out to

be equivalent to minimizing a Frobenius norm objective under diag-

onal scaling constraint [Yeremin et al. 2000]. Schäfer et al. [2021a]

then showed that Kaporin’s preconditioner and the Vecchia approx-

imation are equivalent and can be obtained by sparsity-constrained

Kullback-Leibler (KL) minimization as well; they also proposed a

reordering of rows and columns of the Green’s functions and a

sparsity pattern to create an end-to-end solver deducing the target

values from boundary values with a provably log-linear complexity.

In this paper, we leverage Kaporin’s variational definition of the

inverse-Cholesky factor but applied to dense matrices, and intro-

duce a massively-parallel implementation of a BIE preconditioner.
We show on various graphics applications that timings can be eas-

ily improved by one to four orders of magnitude, unlocking the

potential of MFS/BEM to efficiently handle very large problems.

2.6 Overview
The remainder of this paper focuses on solving the Boundary Inte-

gral Equation (5) efficiently. After quickly reviewing the closed-form

sparsity-constrained minimizer of Kaporin condition number on

which our approach is based, we will detail the efficient construc-

tion of our preconditioner for 𝑲 , written as the product of a sparse

approximation of the inverse-Cholesky factor and its transpose, so

that a few iterations of Preconditioned Conjugate Gradient suffice

in practice to solve the BIE (see Fig. 3). We will then show several

applications of our fast BIE solver, demonstrating how its massively-

parallel nature brings tremendous speedups in practice.

3 VARIATIONAL MULTISCALE PRECONDITIONER
We now present in detail how to compute, given a lower-triangular

sparsity pattern S, a sparse inverse-Cholesky factor 𝑳S of the 𝐵×𝐵
matrix 𝑲 to approximate 𝑲−1

: the resulting approximate factor 𝑳S
can be used to form a low-cost, yet efficient preconditioner 𝑳S𝑳

T
S to

greatly accelerate the convergence of PCG when solving Eq. (5).

3.1 Kaporin’s variational inverse-Cholesky factor
While the real lower-triangular inverse-Cholesky factor 𝑳 such that

𝑳𝑳T
=𝑲−1

is slow to evaluate, one can always, for efficiency, look for

an incomplete inverse-Cholesky factor 𝑳S which is a sparse approx-

imation of 𝑳 for a given choice of sparsity pattern S := {(𝑖, 𝑗) | 𝑖 ≥
𝑗 and (𝑳S)𝑖 𝑗 ≠0}. A straightforward approach to find such a matrix

𝑳S to best approximate 𝑲−1

is to minimize ∥𝑰 − 𝑳S𝑳
T
S𝑲 ∥𝐹 subject

to the sparsity pattern S, as this would provide an arguably opti-

mal preconditioning of matrix 𝑲 . However, this Frobenius-norm
minimization problem requires nonlinear solves that are more com-

putationally intensive than the initial linear system we intend to

solve for large scale problems.

Kaporin [1994] found a simple, closed-form solution of a different

optimization problemwhich happens to be very useful in our context

as it can be implemented in a massively-parallel fashion. First, he

proved that what is now known as the Kaporin condition number

𝜅
Kap

of amatrix— that is, the ratio between the algebraic and geometric
means of the eigenvalues of amatrix instead of the standard condition

number𝜅 evaluated as the ratio between its maximum andminimum

eigenvalues — leads to a tighter bound than 𝜅 on the estimate of the

iteration count needed by PCG to reach convergence within a given

tolerance 𝜖 . Second, he proved that the matrix 𝑳S subject to a given

sparsity pattern which minimizes the Kaporin condition number

𝜅
Kap
(𝑳S𝑳

T
S𝑲 ) can be expressed column-by-column in closed-form

using inverses of small sub-blocks of matrix 𝑲 : if we denote the
sparsity pattern of a column 𝑗 of 𝑳S as S𝑗 := {𝑖 | (𝑖, 𝑗) ∈S} (i.e., the
row indices of the non-zero elements contained in the column 𝑗 of a

matrix with sparsity S), then the 𝑗
th

column 𝑳S𝑗 , 𝑗 of 𝑳S is expressed

independently from the other columns as:

𝑳S𝑗 , 𝑗 =
𝑲−1

S𝑗 ,S𝑗
e𝑗√︃

e
T
𝑗𝑲
−1

S𝑗 ,S𝑗
e𝑗

, ∀𝑗 = 1..𝐵, (7)

where 𝑲S𝑗 ,S𝑗 is the submatrix of 𝑲 with row and column indices in

S𝑗 , and e𝑗 = (1, 0, . . . , 0)
T ∈R|S𝑗 | is a unit vector of length |S𝑗 |. This

Kaporin construction of 𝑳S , which happens to achieve Vecchia’s

approximation [Vecchia 1988] and which has since then found two

other variational interpretations (see Appendix A for details), thus

provides an optimal preconditioner for PCG for a given sparsity,

with the potential to drastically accelerate the solve of Eq. (5) if a

good balance between sparsity and computational time to evaluate

the inverse-Cholesky factor 𝑳S is found: too sparse a constrained
patternmay be very fast to evaluate butmay not end up conditioning

the matrix 𝑲−1

sufficiently well to guarantee PCG convergence in

a few iterations; better conditioning may come at a price of a far

reduced sparsity, which will take longer to evaluate.

Note that Kaporin’s work was mostly applied to inverting sparse
matrices; since these matrices typically have dense inverses and

inverse-Cholesky factors, the strength of this preconditioning was

fundamentally limited. Recently, Schäfer et al. [2021a] showed that

it can be used, instead, to approximate the sparse inverse-Cholesky

factors of dense Green’s matrices in log-linear cost, making it a

promising approach for their inversion.

The remainder of this section tackles the evaluation of 𝑳S whose
columns are expressed in Eq. (7). We will see that we can render

this evaluation massively-parallel, since each column (or groups of
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Precompute (CPU)

Compute (GPU) Solve (GPU+CPU) Evaluate (CPU)

Compute reverse

max-min ordering on

source points (Sec. 3.3)

Compute simplicial

sparsity pattern S
(Sec. 3.3)

Aggregate points into

supernodes {J𝑘 }𝑘
(Sec. 3.4)

Build supernodal

sparsity pattern Ŝ
(Sec. 3.4)

Assemble 𝑲ŜJ,ŜJ
for each

supernode in parallel

Factorize 𝑲ŜJ,ŜJ
and

compute 𝑳Ŝ𝑗 ,𝑗
in

parallel (Eq. (8))

Solve BIE 𝑲𝒔=𝒃 with

our preconditioner

𝑳Ŝ𝑳
T
Ŝ (Sec. 3.5)

Extrapolate the solution

to target points using

FMM (Sec. 3.6)

Fig. 3. Overview. In order to solve a generic boundary integral equation like Eq. (5), the construction of our approximate Cholesky factor 𝑳S for 𝑲−1 consists
of a few CPU-based precomputations (such as constructing the ordering and the sparsity pattern), followed by the assembly on the GPU of submatrices of 𝑲
to construct the factor 𝑳S in a massively-parallel manner; then 𝑳S𝑳

T
S is used as a preconditioner which allows for a Preconditioned Conjugate Gradient

algorithm to converge in a few iterations; finally a FMM-based evaluation on a series of target 3D points is performed where the solution needs to be evaluated.

columns) can be evaluated independently and that the sub-blocks

of 𝑲 requiring inversions can be performed, themselves, in parallel.

Notice also that only few elements of 𝑲 are needed (those used in

the relevant sub-blocks), so our construction will not even require the
full assembly of the matrix 𝑲 , thus further saving time and memory

by skipping many unnecessary evaluations of Green’s functions.

3.2 Local Cholesky factorization for 𝑳S𝑗 , 𝑗
Each column of 𝑳S can be processed in parallel through Eq. (7) via

a small, dense linear solve. Since 𝑲S𝑗 ,S𝑗 is symmetric and positive

definite, we can factorize 𝑲S𝑗 ,S𝑗 using a classical Cholesky decompo-

sition followed by two back-substitution to obtain𝑲−1

S𝑗 ,S𝑗
e𝑗 . However,

given the sparse structure of vector e𝑗 , the two back-substitutions

can be replaced by one if one uses the reverse Cholesky factor-

ization of 𝑲S𝑗 ,S𝑗 . More specifically, after assembling 𝑲S𝑗 ,S𝑗 based
on the column sparsity S𝑗 , we can compute the decomposition

𝑲S𝑗 ,S𝑗 =𝑼S𝑗 ,S𝑗 𝑼
T
S𝑗 ,S𝑗

, where 𝑼S𝑗 ,S𝑗 is an upper triangular matrix. We

then tranform Eq. (7) into

𝑳S𝑗 , 𝑗 = 𝑼 −TS𝑗 ,S𝑗 e𝑗 , ∀𝑗 = 1..𝐵 (8)

to compute the 𝑗
th

column of 𝑳S . We note that computing this

reverse decomposition does not incur extra cost: if chol(·) denotes
the standard lower-triangular Cholesky factor, 𝑼S𝑗 ,S𝑗 is found by

𝑼S𝑗 ,S𝑗 = 𝑹 𝑗 chol(𝑹 𝑗𝑲S𝑗 ,S𝑗 𝑹 𝑗 )𝑹 𝑗 , (9)

where 𝑹 𝑗 is the permutation matrix of size |S𝑗 |×|S𝑗 | which reverses

the indices from 1, 2, ..., |S𝑗 | to |S𝑗 |, ..., 2, 1. Not only using Eq. (8)

in lieu of Eq. (7) simplifies computations, but we will see in Sec. 3.4

that it also enables the reuse of the factor to compute other columns

𝑳S𝑗 , 𝑗 aggregated into a same supernode because the bottom-right

𝑘×𝑘 sub-matrix of 𝑼S𝑗 ,S𝑗 (with 𝑘 < |S𝑗 |) is also the reverse Cholesky
factor of the bottom-right 𝑘×𝑘 sub-matrix of 𝑲S𝑗 ,S𝑗 for all 𝑗 .

3.3 Ordering and sparsity pattern
For preconditioners based on incomplete matrix factorization, the

ordering of the degrees of freedom (i.e., the orders of rows/column)

and the choice of sparsity pattern play a crucial role on the quality

of the results. In this work, we adopt the reverse max-min ordering 𝑷

last 50 last 150 last 250

Fig. 4. Reverse max-min ordering: Geometrically, the reverse max-min
order decomposes all DoFs (here, vertices of a mesh) into different spatial
scales, with coarse-scale points (capturing low frequencies) at the end, and
fine-scale points (handling high-frequency details) at the beginning.

to permute 𝑲 and then compute (𝑷 T𝑲𝑷 )−1

=𝑳S𝑳
T
S , as was proposed

for ill-conditioned differential operators and Gaussian process re-

gression in [Guinness 2018; Chen et al. 2021b; Schäfer et al. 2021a,b].

Generating the max-min ordering is implemented through farthest

point sampling: starting from an arbitrary boundary point 𝒚𝑖
0

, we

repeatedly pick the next boundary point in the ordering to be the

farthest one from already-selected ones thus far, yielding a series of

ordered indices as

𝑖𝑘 = argmax

𝑞
min

𝑝∈{0,𝑘−1}
dist(𝒚𝑞,𝒚𝑖𝑝 ), (10)

where dist(·, ·) is the Euclidean distance. We then reverse this max-

min ordering into 𝑷 = {𝑖𝐵−1
, ..., 𝑖

1
, 𝑖

0
} to permute all DoFs. Note that

while a brute force computation of the max-min ordering would be

in O(𝐵2), we instead apply the algorithm from [Schäfer et al. 2021b,

Alg. 4.1] implemented in GPVecchia library [Zilber and Katzfuss

2021], which is in O(𝐵 log
2 (𝐵)).

Geometrically, the reverse max-min reordering implies a mul-

tiresolution order of the boundary samples onM (see Fig. 4), where

“coarse-scale” boundary points (appearing later in the ordering) are
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first spread out over the domain, before “fine-scale” points (appear-

ing earlier in the ordering) come in to fill in the voids (see [Chen

et al. 2021b]), establishing a notion of length scale ℓ on all the points

defined through ℓ𝑖𝑘
= min𝑝∈{0,𝑘−1} dist(𝒚𝑖𝑘 ,𝒚𝑖𝑝 ) which is monoton-

ically increasing in the reverse max-min ordering. Since the 𝑘-th

column of the inverse-Cholesky factors of a covariance matrix en-

codes conditional correlations of the 𝑘-th variable of the Gaussian

process with those later in the ordering [Katzfuss and Guinness

2021; Schäfer 2021], the reverse max-min ordering ensures that the

spatial locations associated with the 𝑘-th variable and its successors

are roughly equally distributed in space. In this setting, the Green’s

functions of elliptic PDEs are known to be subject to the screening
effect illustrated in Fig. 5, whereby conditioning on just a subset of

the points leads to near-independence with more distant points, as

long observed in the spatial statistics literature [Stein 2002]. Rigor-

ous bounds on screening, implying exponential decay of the inverse

Cholesky factors, were derived in [Schäfer et al. 2021a,b] based on

prior work on operator-adapted wavelets and numerical homoge-

nization (see [Owhadi and Scovel 2019; Altmann et al. 2021] for an

overview on these topics). This screening effect thus motivates our

choice of sparsity pattern: we construct S based on the length scale

of each point, as was advocated for the preconditioning of differen-

tial operators in [Chen et al. 2021b], with the non-zero entries in

the inverse-Cholesky factor specified as

S :=
{
(𝑖, 𝑗) |𝑖 ≥ 𝑗 and dist(𝒚𝑖 ,𝒚 𝑗 ) ≤ 𝜌 min(ℓ𝑖 , ℓ𝑗 )

}
, (11)

meaning that an element (𝑖, 𝑗) in the sparsity is forced to be non-

zero if𝒚𝑖 and𝒚 𝑗 are within each other’s support radius scaled by 𝜌 , a
parameter which allows a tradeoff between preconditioning quality

and computational cost. In practice, sparsity computation can be

done in parallel for each column through a fast range search sup-

ported by 𝑘-d trees [Chen et al. 2021b]. Note that we refer to Eq. (11)

as the simplicial sparsity to differentiate it from the supernodal

sparsity which we will introduce next.

one column of 𝑲 same column of 𝑲 −𝑲 (𝒚, •)𝑲 (•, •)−1𝑲 (•,𝒚 )

Fig. 5. Screening effect. The covariance matrix 𝑲 features long-range
correlations but the covariance conditioned on coarse (blue) samples given
by its Schur complement is highly localized. Inverse Cholesky factors of 𝑲
encode conditional correlations, thus screening causes their near-sparsity.

3.4 Aggregated factorization
So far, we have seen how each column of 𝑳S only requires the as-

sembly of small matrices 𝑲S𝑗 ,S𝑗 based on our chosen sparsity, which

saves time and memory compared to assembling the whole matrix

𝑲 . However, notice that multiple columns of the reverse-Cholesky

factors may require nearly the same dense sub-matrix 𝑲S𝑗 ,S𝑗 , hence
leading to redundant computations in their factorizations. Reusing

𝑲S𝑗 ,S𝑗 and its Cholesky factorization 𝑼S𝑗 ,S𝑗 𝑼
T
S𝑗 ,S𝑗

can be achieved

by aggregating columns requiring nearly the same factorization

into a supernode [Stein et al. 2004; Ferronato et al. 2015; Guinness

2018] to remove obvious duplicated evaluations: the factorization

of an inclusive sub-matrix of 𝑲 will thus serve all the columns of

the supernode, since each column can extract the needed rows and

columns from the factor.

Algorithm 1: Identifying supernodes
Data: Simplicial sparsity pattern S, length scales {ℓ𝑗 } 𝑗
Result: A set of supernodes {J𝑘 }𝑘

1 for 𝑗 ← 1 to 𝐵 do
2 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 [ 𝑗] ← false;

3 𝑘 ← 1;

4 for 𝑗 ← 1 to 𝐵 do
5 if 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 [ 𝑗] then
6 continue;

7 J𝑘 ← {}; // initialize a new supernode

8 for 𝑖 ∈ S𝜌,𝑗 do
9 if !𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 [𝑖] and ℓ𝑖 ≤ 3

2
ℓ𝑗 ; // nearby scales

10 then
11 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 [𝑖] ← true;
12 J𝑘 ← J𝑘 ∪ {𝑖}
13 𝑘 ← 𝑘 + 1;

Aggregating columns into supernodes is done bymerging spatially-

close indices of similar scales (see pseudo-code in Alg.1) as they

are more likely to share similar indices for their sub-matrix of 𝑲 .
When the algorithm exits, it returns a set of supernodes {J𝑘 }𝑘 , and

S𝑘

S𝑗

Ŝ𝑘

Ŝ𝑗

𝑗, 𝑘 ∈ J

each of them consists of certain number of indices

which are not necessarily consecutive in the reverse

max-min ordering — but all indices in the same su-

pernode will share (part of) the same matrix ex-

tracted from 𝑲 : the supernode will perform a factor-

ization of the submatrix of 𝑲 with selected indices

derived from the extended supernodal sparsity pat-

tern Ŝ. Simply speaking, the sparsity of a column

𝑗 ∈ J is the union of all non-zero entries collected

from all columns belonging to J; that is, its sparsity
is Ŝ𝑗 is defined through (see inset)

Ŝ𝑗 := {𝑖 | 𝑖 ≥ 𝑗 and ∃𝑘 ∈ J, (𝑖, 𝑘) ∈S} ,∀𝑗 ∈ J. (12)

We can then define the sparsity pattern of a supernode through:

ŜJ=
⋃
𝑗∈J
Ŝ𝑗 .

Fig. 6 illustrates the supernodal aggregation and the resulting su-

pernodal sparsity pattern. We denote the submatrix of 𝑲 within a

supernode as 𝑲ŜJ,ŜJ , and its reverse Cholesky factor is reused for

computing all columns 𝑳Ŝ𝑗 ,𝑗 ,∀𝑗 ∈ J. A direct implementation of the

supernodal approach is given in Alg. 2, where each of the three steps

can be massively parallelized. As Fig. 7 demonstrates, computing

the inverse Cholesky factor scales almost linearly in problem size,

and so do the memory cost to store the local matrix 𝑲ŜJ,ŜJ , and thus

the global inverse Cholesky factor 𝑳Ŝ .
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3.5 Preconditioning a BIE matrix 𝑲
Now that we have a fast algorithm to evaluate 𝑳S for a given sparsity
parameter 𝜌 , and knowing that 𝑳S𝑳

T
S approximate 𝑲−1

, we may be

tempted to simply compute the solution to Eq. (5) via 𝒃 = 𝑳S𝑳
T
S𝒔,

which is trivial to evaluate through two backsubstitutions. However,

the accuracy of this direct solve may not good enough for a small 𝜌 ,

while increasing 𝜌 to get a denser, more accurate factorization leads

to a quick growth in computational and memory costs (see Fig. 16

for an example). However, we saw that the Kaporin solution we

computed is optimal in terms of the resulting condition number

𝜅
Kap
(𝑳S𝑳

T
S𝑲 ). So we can instead use 𝑳S𝑳

T
S as a preconditioner on a

conjugate gradient solver to guarantee better efficiency in solving

𝑲𝒔=𝒃 . Moreover, since the preconditioner only needs to be applied

to the residual 𝒆𝑘 =𝑲𝒔𝑘 − 𝒃 at iteration 𝑘 of the conjugate gradient,

we only need to apply two low-cost sparse matrix-vector products

to evaluate 𝑳S𝑳
T
S𝒆𝑘 , hence the overhead spent on conditioning the

linear system is quite limited. (Note that this is sharp contrast with

the incomplete Cholesky preconditioner for differential operators

from [Chen et al. 2021b], where two back-substitutions were needed

Algorithm 2: Supernodal approach for 𝑳Ŝ

Data: Supernodal sparsity patterns {ŜJ}J, Green’s function
𝐺 (·, ·), source points {𝑧𝑖 }𝑖 .

Result: Inverse Cholesky factor 𝑳Ŝ such that 𝑲−1≈𝑳Ŝ𝑳
T
Ŝ

1 Function AssembleLocalMFSMatrix():
2 for each supernode J do
3 𝑛J ← |ŜJ |;
4 𝑲ŜJ,ŜJ ← 0𝑛J×𝑛J ;
5 for 𝑖 ∈ J, 𝑗 ∈ J do
6 𝑲ŜJ,ŜJ [𝑖, 𝑗] ← 𝐺 (𝑧𝑖 , 𝑧 𝑗 );

7 Function LocalCholeskyFactorize():
8 for each supernode J do
9 compute reverse Cholesky decomposition

𝑲ŜJ,ŜJ =𝑼J𝑼
T
J ;

10 Function ComputeGlobalFactor():
11 for 𝑗 ← 1 to 𝐵 do
12 Find J such that 𝑗 ∈ J;
13 𝑛 𝑗 ← |Ŝ𝑗 |;
14 𝑳Ŝ𝑗 ,𝑗 ← (𝑼J [-𝑛 𝑗: ,-𝑛 𝑗: ])

−T
e𝑗 ; // python notation

(a) (b) (c) (d)

Fig. 6. Aggregated sparsity pattern. The supernode clusters (each consist-
ing of points with the same color) are shown on a sphere model with 1275
points (a), along with the simplicial sparsity pattern with 𝜌 =3 (b) and the
supernodal sparsity pattern (c). Reordered supernodal pattern (d) by placing
columns within a supernode consecutively (for visualization purposes only).
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Fig. 7. Asymptotic behaviors. We test our algorithm in 3D for boundary
points that are uniformly distributed over a square. In (a), (b) and (c), the
three variational functionals presented in Appendix A can be seen decreas-
ing as the sparsity parameter 𝜌 increases (since the inverse-Cholesky factor
gets less sparse) — and in particular, the Kaporin condition number drops
very quickly. In (d) and (e), a quasi-linear growth in the number of bound-
ary values 𝐵 for both memory costs and time costs is witnessed for our
GPU-based inverse-Cholesky preconditioner computation over a variety of
sparsity levels, confirming the scalability of our construction.

to perform preconditioning.) In practice, we can use a relatively

small 𝜌 to already drastically reduce the amount of iterations: in

Fig. 8, a value 𝜌 =6 for a system of around 260𝐾 degrees of freedom

leads to PCG convergence in exactly 7 iterations for relative errors

below 0.03, compared to several hundreds of iterations for a simple

Jacobi preconditioner.

3.6 Black-box FMM for matrix-vector product
Although our preconditioner can be constructed and applied effi-

ciently, the run-time performance of PCG would be significantly

slowed down for large problems if a full evaluation of the product

𝑲 𝒔 needs to be performed. However, there exists a large volume

of work to speedup this dense matrix-vector product. Here, we ex-

ploit the Fast Multipole Method, already mentioned in Sec. 2, to

accelerate dense matrix-vector products in PCG. We adopt the black-

box fast multipole method implementation of [Wang et al. 2021]

which only requires to provide a routine to evaluate the regularized

Green’s function 𝐺
𝜀
between two points 𝑥 and 𝒚, without having

to manually implement FMM operators such as multipole-to-local,

multipole-to-multipole, etc. Their code constructs a low-rank ap-

proximation of Green’s functions using Chebyshev polynomials

for non-oscillatory kernels, further compressed through SVD to

reduce the complexity of the matrix-vector product from quadratic

to linear. Thus, it is well suited to our case for a range of Green’s

functions in both 2D and 3D. Note that this same FMM procedure

(or alternatively, an H -matrix) can be used for interpolating the

solution to the target points via Eq. (6).
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4 APPLICATIONS AND RESULTS
In this section, we first discuss about a few implementation details

before testing our method on various CG-related applications: we

show how our preconditioner significantly boosts the performance

of solving Laplace’s equations, linear elasticity and Helmholtz equa-

tions with boundary conditions. Finally, the link between MFS and

Gaussian Processes is explored, enabling uncertainty quantification.

4.1 Implementation
Given boundary points {𝒚𝑖 }𝑖 and target points {𝑥𝑘 }𝑘 , we rescale
them so that their bounding box is unit. We perform a number

of precomputations directly on the CPU, including computing the

max-min order, identifying the supernodes, and constructing the

sparsity patterns (S and its associated column sparsities S𝑗 ). We

start the column-wise construction of the sparse inverse-Cholesky

factor and its assembly of local matrices 𝑲S𝑗 ,S𝑗 along with their fac-

torizations entirely on GPU to leverage the massive parallelism they

offer. During PCG iterations, we combine NVIDIA
®

cuSPARSE and

cuBLAS for optimized linear algebra, and the CPU-based black-box

FMM from [Wang et al. 2021] to accelerate matrix-vector prod-

ucts. The source code of our implementation is made available at

https://gitlab.inria.fr/geomerix/public/mfs-chol.

All examples shown in this paper were run on a laptop (AMD

Ryzen 7 5800H CPU with 8 cores and 16G RAM) with a NVIDIA

GeForce RTX 3060 Laptop GPU with 6GB of RAM to prove scala-

bility — except for Fig. 2 where an NVIDIA RTX A6000 GPU with

48GB of RAM was employed instead to handle our largest matrix

size. Because all the Green’s functions we use are isotropic, 𝐺 (𝑥,𝒚)
is always expressed as a function of 𝑟 = ∥𝑥−𝒚∥. We thus use a simple

regularization approach consisting in changing 𝑟 in their expression

to 𝑟𝜀 =
√︁
𝑟

2+𝜀2

, with 𝜀 = 10
−5

(any value in the range [10
−6

, 10
−4]

provides visually similar results) — but other regularizations can be

used. The only parameter in our approach is 𝜌 to construct the spar-

sity pattern S. Since we are dealing with boundary points sampling

a hypersurface, we found that for 2D problems, 𝜌 should be set rela-

tively large (e.g., around 8), while 3D problems should use a smaller

𝜌 (e.g., around 5) to offer a good balance between computational

cost and preconditioning quality. Note that the resulting quality

of our preconditioner depends not only 𝜌 , but also on the spatial

distribution of boundary points: if very dense regions of boundary

points are present, 𝜌 can be mildly decreased. Finally, we use the

relative error Err= ∥𝑲𝒔 − 𝒃 ∥/∥𝒃 ∥ to measure our solver’s accuracy.

4.2 Laplace’s equation
Laplace’s equation Δ𝑢 =0 with imposed boundary conditions has

been a staple of CG applications. Functions satisfying this PDE are

called harmonic, and the Green’s function of the Laplace operator is

𝐺 (𝑥,𝒚) =

− 1

2𝜋
ln(𝑟 ), in 2D

1

4𝜋𝑟
, in 3D

(13)

where 𝑟 = ∥𝑥−𝒚∥. We demonstrate the effectiveness of our precon-

ditioner on Laplace’s equation by showing examples of “diffusion

pixels”, which can be regarded as an approximate meshless version

colored boundary pixels diffusion results

Bananas (277229) Lotus (230606) Roses (275227)

0

10

20

time(s)
precompute compute PCG solve FMM evaluate

Fig. 8. Diffusion pixels.We provide stage-by-stage timings for our algo-
rithm on three “pixel diffusion” examples. The number of input colored
pixels (i.e., boundary points) for diffusion is shown between parentheses.
The final image size is 1280× 853, i.e., over 1 million target points to evaluate.
Here, the sparsity pattern uses 𝜌 =6. PCG time includes solving three RGB
channels, each using 7 PCG iterations. Note that using fewer iterations
would be even faster and the incurred error would be hardly noticeable.

of diffusion curves for image synthesis [Orzan et al. 2008; Sun et al.

2012]. For a number of given color pixels {𝒚𝑖 }𝑖 with prescribed

colors {𝒃𝑖 }𝑖 (including three RGB channels as Dirichlet boundary

conditions), we can solve for Eq. (5) via PCG to obtain the “color

charge” of each source point 𝑧𝑖 ≡ 𝒚𝑖 . Finally, these color charges
are extrapolated to diffuse the boundary colors to the whole image,

which can be used to create vector graphics (as we could zoom in by

computing more target points easily through FMM) or as a way to

compress real-world photos. On each example in this paper, we take

an input image, extract its “edge pixels” (and their colors) through a

basic Canny edge-detector filter, and use these pixels and their four

immediate neighbors (resp., their colors) as boundary points (resp.,

Dirichlet boundary colors) for a Laplacian-based BIE. The solution

of our solve is thus a harmonic blending of these boundary colors,

reproducing the original image well.

Reconstructing a high-resolution image from these boundary

color pixels can easily result in a very large BIE (~270, 000
2

for
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Fig. 9. PCG convergence. This example uses 109𝐾 colored pixels as Dirich-
let boundary conditions. Applying our inverse-Cholesky based precondi-
tioner (with 𝜌 = 4) remarkably accelerates convergence compared to a
Jacobi-based preconditioned solve, and the results are almost indistinguish-
able after only 2 iterations. Other preconditioners, such as Gauss-Seidel or
SOR, are simply too costly to apply on dense matrices.

Fig. 8), and the boundary conditions (i.e., the prescribed colors) of-

ten involve a wide range of frequencies — both facts posing great

challenges for traditional direct or iterative solvers. Our precon-

ditioner resolves these difficulties remarkably well: in Fig. 8, we

breakdown the time cost of our method on three 1280×853 images,

with BIE matrices of sizes above 230𝐾 × 230𝐾 , and a number of tar-

get points over 1𝑀 , for a total time of around 30 seconds to produce

the final diffusion images on our laptop. For just 7 PCG iterations

per RGB channel, the averaged relative error is between 10
−3

to

10
−2

. In Fig. 9, we compare the performance of PCG with our pre-

conditioner and with a simple Jacobi (diagonal) preconditioner on

a smaller example of size 640 × 480. Our method quickly reduces

the error and the diffusion result is almost indistinguishable after

only two iterations, while the Jacobi-based PCG takes two orders of

magnitude more iterations to reach a comparable error level. We

further tested our algorithm on an even larger image in Fig. 2, with

1.35𝑀 DoFs for the BIE solve and 8.4𝑀 target points to evaluate.

Only 9 iterations were needed to reduce the error around 1% using

only 9GB of GPU memory — while a simple Conjugate Gradient

could not converge even after 1.5𝐾 iterations and more than one

day. Finally, we tested a 3D diffusion case in Fig. 10. Since MFS is

meshless, we do not need a manifold or singly-connected mesh, so

our diffusion is based on a painted scalar field on a mesh with many

holes, which emits its heat towards two grey walls. For around 240𝐾

DoFs and 524𝐾 target points (on the two walls lit by this lamp), it

took less than 20 seconds in total to solve and evaluate the solution,

with 7 PCG iterations needed to reach a relative error of less than

10
−2

. Notice in comparison that recent papers related to diffusion

images (e.g., [Bang et al. 2023]) typically limit their examples to

have less than 16𝐾 DoFs for their BIE — and only approximate the

boundary conditions due to a smaller amount of source points.

#𝑉
source

: 234646
#𝑉

target
: 524288

𝜌 =5.5

𝑡 (precomp.) =4.6𝑠
𝑡 (compute) =5.1𝑠
𝑡 (pcg) =7.2𝑠
𝑡 (eval.) =1.6𝑠
𝐸𝑟𝑟 =6.2×10−3

#𝑉
source

: 226872
#𝑉

target
: 524288

𝜌 =5.5

𝑡 (precomp.) =4.4𝑠
𝑡 (compute) =4.8𝑠
𝑡 (pcg) =6.2𝑠
𝑡 (eval.) =1.6𝑠
𝐸𝑟𝑟 =7.7×10−3

Fig. 10. 3D Laplacian. We paint an intensity field on the Tower mesh
(0.2𝑀 points, with different irregular holes in the top and bottom examples)
representing heat, which will radiate to the target planes (0.5𝑀 points). The
whole process takes less than 20 seconds for a relative error below 10

−2.

4.3 Linear elasticity
Our second example deals with linear elasticity. The equation for

elastic deformation encoded via a displacement (vector) field 𝑢 is:

Δ𝑢 + 1

1 − 2𝜈
∇(∇ · 𝑢) = 0,

where 𝜈 is the Poisson ratio, quantifying the incompressibility of

the elastic material. The fundamental solutions to linear elasticity

are known as Kelvinlets, written as

𝐺 (𝑥,𝒚) =


𝑎 − 𝑏
𝑟

ln(1/𝑟 )𝑰 + 𝑏

𝑟
2
𝒓𝒓T, in 2D

𝑎 − 𝑏
𝑟

𝑰 + 𝑏

𝑟
3
𝒓𝒓T, in 3D

(14)

where𝑎=1/2𝑑−1

𝜋 and𝑏=𝑎/4(1−𝜈) in dimension𝑑 =2, 3, while 𝑟 still

denotes the distance ∥𝑥 −𝒚∥. Kelvinlets have recently been applied

to digital sculpting for real-time volumetric deformation [De Goes

and James 2017]. However, enforcing positional constraints using

Kelvinlets can significantly degrade performance: it involves solving

a dense linear system, very much akin to the BIE in Eq. (5), via

either Cholesky or LU decomposition, and further constraints can

be added via rank-one updates. Our preconditioner applies directly

to this case of multiple constraints in the Kelvinlet approach, greatly

enhancing the efficiency with which one can solve this problem. In

our results, we use a boundary in the shape of a box surrounding

the initial object, and we provide a series of displacement vectors
on boundary points, which we picked to be on a grid for each of

the faces of the box, see Fig. 13 (top). The MFS-derived BIE is then

solved to return forces at these boundary points, from which we

derive the elastic deformation applied to a car through FMM-based
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𝑘 =90 𝑘 =250 𝑘 =605

𝑡 (asm.) =64.0s

𝑡 (fac.) =0.32s

𝑡 (pcg) =0.28s

𝑡 (eval.) =5.4s

err.=0.001197

𝑡 (asm.) =62.7s

𝑡 (fac.) =0.31s

𝑡 (pcg) =0.27s

𝑡 (eval.) =5.4s

err.=0.003345

𝑡 (asm.) =62.4s

𝑡 (fac.) =0.31s

𝑡 (pcg) =0.28s

𝑡 (eval.) =5.5s

err.=0.006167

Fig. 11. 2D Helmholtz for various wave numbers. We solve the scattering of input waves with 12.7𝐾 boundary points on the World Map model. For
this least-squares case, assembling 𝑲S𝑗 ,S𝑗 becomes the most computationally expensive step, while time cost for computing the Cholesky factor (with 𝜌 =8)
and PCG solve are almost negligible. We also observe that as 𝑘 increases, the error grows larger due to the worsening condition number for high-frequency
Helmholtz equations. Still, we only apply 15 iterations for PCG, giving an accurate enough result for this particular wave-propagation purpose.

evaluation. We used 14408 boundary points on this example, leading

to a BIE matrix of size 43224×43224. Our PCG solver took less than

8 seconds to solve the BIE equation with an error below 5×10
−3

.

Since the car model has about 199𝐾 vertices, its deformation was

evaluated in less than 10 seconds. The example of the eagle in Fig. 1

has 134𝐾 vertices, which took 5 seconds to deform based on the

same BIE solution than the car.

4.4 Helmholtz equation
We discuss another possible application of our preconditioner, this

time to a slightly more involved case to demonstrate the range

of operators our approach can deal with. The Helmholtz equation

has often been used in Computer Graphics, whether for acoustic

transfer [James et al. 2006], or for the animation of linear water

waves [Schreck et al. 2019] that are separable in space and time. For

a complex-valued function 𝑢 in space, it imposes

Δ𝑢 + 𝑘2

𝑢 = 0, (15)

where 𝑘≠0 is the wave number representing the frequency of the

solution. The Green’s functions are known to be of the form

𝐺 (𝑥,𝒚) =


i

4

𝐻
(1)
0
(𝑘𝑟 ), in 2D,

exp(i𝑘𝑟 )
4𝜋𝑟

, in 3D,

(16)

where i is the imaginary unit number, and 𝐻
(1)
0

is the zeroth-order

Hankel function of the first kind (i.e.,𝐻
(1)
0
(𝑥)= 𝐽

0
(𝑥) + i𝑌

0
(𝑥) where

𝐽
0
and𝑌

0
are the zeroth-order Bessel function of the first and second

kind respectively). In sharp contrast to the Laplace and elasticity

cases described earlier, our method does not directly apply because

Helmholtz’s BIE matrix 𝑲 is now complex and not Hermitian pos-

itive definite. As a consequence, we solve the least-squares BIE
problem for the Helmholtz equation, as we mentioned in Sec. 2.

There are thus two major differences in terms of implementation

that we need to address. First, in the BIE solve stage, we must ex-
plicitly store 𝑲 (which we never had to do before), since evaluating

each term (𝑲H𝑲 )𝑖 𝑗 would require to compute an inner product∑𝐵

𝑘=1
𝐺 (𝒚𝑘 , 𝑧𝑖 )

H
𝐺 (𝒚𝑘 , 𝑧 𝑗 ), bringing lots of redundant computations.

Second, in the interpolation stage, we directly compute the matrix-

vector product parallelized over each target points on GPU, as the

black-box FMM does not perform well on oscillatory kernel func-

tions in general due to its use of low-rank speedup. This Helmholtz

case thus requires both more memory and a bit more time to evalu-

ate the final target values. In our tests, we solve for an input standing

plane wave propagating in a direction 𝒅 being scattered by bound-

aries. The plane wave is decomposed into space and time parts, i.e.,

𝑢
in
(𝑥, 𝑡) =𝑢

in
(𝑥, 𝑘) exp(−i𝜔𝑘𝑡) where 𝜔𝑘 is the angular frequency

and 𝑢
in
(𝑥, 𝑘) = exp(i 𝒅T

𝑥). The Dirichlet-based BIE in frequency

space is thus

∑𝐵

𝑗=1
𝐺 (𝒚𝑖 , 𝑧 𝑗 )𝑠 𝑗 + 𝑢in

(𝒚𝑖 , 𝑘)=0. We can then evaluate

Dirichlet Neumann

Fig. 12. Dirichlet vs. Neumann conditions. Both the Dirichlet (left) and
Neumann problems (right) can be solved by MFS, using either the original
Green’s functions or its second-order normal derivatives. Both produce
interesting reflections of input waves, here for a wave number set to 𝑘 =300.
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# sources (box): 14408

# target (car): 199249

𝜌 =3

𝑡 (precomp.) =0.132s

𝑡 (comp.) =0.644s

#iter.=10

𝑡 (pcg) =7.270s

𝑡 (eval.) =11.686s

𝐸𝑟𝑟 =0.003106

𝜌 =3

𝑡 (precomp.) =0.138s

𝑡 (comp.) =0.631s

#iter.=10

𝑡 (pcg) =9.168s

𝑡 (eval.) =10.542s

𝐸𝑟𝑟 =0.001526

𝜌 =3

𝑡 (precomp.) =0.182s

𝑡 (comp.) =0.633s

#iter.=10

𝑡 (pcg) =7.530s

𝑡 (eval.) =11.775s

𝐸𝑟𝑟 =0.004197

Fig. 13. Densely constrained Kelvinlets. While Kelvinlets [De Goes and
James 2017] allow realtime sculpting of models, setting point constraints
leads to dense linear solves, preventing fast results. With our preconditioner,
we can constrain volumetric deformation using Kelvinlets far more effi-
ciently: for this extreme case with over 14𝐾 constraints on a bounding box
of a car, we solve the BIE allowing to compute the induced elastic deforma-
tion of the car in less than 8 s.

the wave solution𝑢 (𝑥, 𝑘) through matrix-vector evaluation (and fur-

ther adding back the term 𝑢
in
(𝑥, 𝑘)), before reconstructing the wave

𝑢 (𝑥, 𝑘) exp(−i𝜔𝑘𝑡) and taking only its real part as the wave height

in time. Comparison between our preconditioner used to solve the

least-squares BIE vs. an SVD solver from the Eigen library [Guen-

nebaud et al. 2010] based on a recursive divide-and-conquer strategy

is provided in Table 1. Even for small problems, we offer an order

of magnitude speedup; as the problem size grows, our method gets

to be three orders of magnitude faster. In Fig. 11, we tested our pre-

conditioner on convoluted boundaries with 12.7𝐾 boundary points.

Table 1. Comparison with SVD. We compare our solver (for 𝜌 =8) with a
divide-and-conquer based SVD implemented in the Eigen library. We solve
the Helmholtz equation with 𝑘 =300, using different numbers of boundary
points to scatter an input wave. Our method outperforms SVD in speed by
one to three orders of magnitude, depending on the boundary size.

SVD Ours

𝐵
𝑡 (fac.) 𝑡 (slv.) 𝑡 (precomp.) 𝑡 (comp.) #iters 𝑡 (pcg) 𝑡 (total) 𝐸𝑟𝑟

1280 4.864 0.003 0.004 0.419 15 0.005 0.427 0.000706

2560 33.757 0.011 0.007 0.715 15 0.013 0.735 0.000679

5120 261.454 0.045 0.013 1.270 15 0.048 1.331 0.004405

7680 911.212 0.156 0.023 3.478 15 0.099 3.600 0.003497

10240 2405.59 0.303 0.032 7.170 15 0.167 7.369 0.003665

𝐵=2560

𝐵=10240

Through profiling, we found out that most of the execution time

was spent on assembling the terms 𝑲S𝑗 ,S𝑗 , while computing the

preconditioner itself and then iterating PCG to convergence took

less than 1 s. in total. Since we parallelized evaluation using GPU,

extrapolating the solution to 288𝐾 target points is still quite efficient.

It is worth mentioning that the error of our PCG solve increases

as the wave number grows, because the matrix 𝑲 becomes more

ill-conditioned: how to efficiently solve a high-frequency Helmholtz

equation is still a very active research field in applied mathematics.

Solving the BIE system coming from a Neumann problem is

equally efficient with our method. Similar to the Dirichlet vari-

ant we discussed above, we formulate the problem by computing

the second-order normal derivatives of the Green’s functions and

write the boundary integral equation∑︁
𝐵

𝑗=1

𝜕
2

𝐺 (𝒚𝑖 , 𝑧 𝑗 )
𝜕𝑛𝑧 𝑗

𝜕𝑛𝒚𝑖

𝑠 𝑗 +
𝜕𝑢

in
(𝒚𝑖 , 𝑘)
𝜕𝑛𝒚𝑖

=0,

which amounts to a double-layer BEM for Neumann boundary con-

ditions. Both variants result in interesting reflections of input waves

as Fig. 12 depicts and as demonstrated in [Schreck et al. 2019].

4.5 Discussion
To conclude this section, we discuss a few more points to better

assess our contributions and their consequences.

Uncertainty quantification. Investigating traditional graphics prob-
lems from a stochastic process point of view has gain interest re-

cently [Sellán and Jacobson 2022]. Instead of seeking for a determin-

istic function as the solution, a stochastic approach focuses on the

distribution of solutions, from which the uncertainty hidden in the

solve process can be quantified. In many ways, the idea of Gaussian
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Process fits well with the boundary value problem — computing the

conditional mean for prediction based on observed data for training

can directly map to interpolating the boundary sources to unknown

target values as in our boundary value problem [Schäfer et al. 2021a].

To make the relation explicit, we can reinterpret the MFS method

using Gaussian processes. Assume that the solution to a PDE is no

longer deterministic but random, and respects a zero-mean Gaussian

distribution on both boundary points and target points, i.e.,[
𝑢 (𝑥)
𝑢 (𝒚)

]
∼ N

(
0,
[
𝑲 (𝑥, 𝑥) 𝑲 (𝑥,𝒚)
𝑲 (𝒚, 𝑥) 𝑲 (𝒚,𝒚)

] )
. (17)

In this sense, Green’s functions can be seen as GP kernel functions

tailored to PDEs. Next, from boundary values (observed data), we

can “predict” the solution at targets (unobserved variables), which

is computed through conditioning the Gaussian process:

𝜇 (𝑓 (𝑥) | 𝒚, 𝑓 (𝒚)) = 𝑲 (𝑥,𝒚)𝑲 (𝒚,𝒚)−1

𝑓 (𝒚), (18)

which exactly reassembles the two stage of our MFS solve. The

solution to a PDE by MFS can thus be seen as the most likely (or

expected) solutions given the boundary value, and there could be

other solutions which may occur with a smaller probability. To

quantify the uncertainty of solution at a target 𝒚𝑖 , we can further

compute its conditional variance based on the boundary data:

𝜎
2

𝒚𝑖
= 𝑲 (𝒚𝑖 ,𝒚𝑖 ) − 𝑲 (𝒚𝑖 , 𝑥)𝑲 (𝑥, 𝑥)

−1𝑲 (𝑥,𝒚𝑖 ) . (19)

We point out these are also the diagonal entries of the Schur comple-

ment of the BIE matrix. Knowing the conditional mean and variance

for an unobserved point, not only its most expected solutions can be

obtained, one can also measure that how likely the solution would

be in a given range (see Fig. 14 for an example), and this could be

useful to statistically determine critical regions when solving a PDE,

helping to either exclude insignificant DoFs to reduce computa-

tional cost or refine sampling to improve the confidence of results.

This interpretation can also be viewed as a special case of solving

PDEs using GPs or radial basis functions [Fornberg and Flyer 2015;

Cockayne et al. 2017; Chen et al. 2021a, 2023] that simplifies due to

the radial basis/covariance function being the Green’s function of

the PDE to be solved. While we simply take Green’s functions as

the prior kernel function fed to the Gaussian process in this paper,

to better quantify how reliable the solve is, prior kernels should

be problem-adapted and should account for various sources of un-

certainty in computation, for instance the discretization error or

hidden noise in boundary data, so that we may develop robust filters

for more reliable solutions.

(a) boundary (b) diffusion result (c) conditional

(d) Pr(0.3<𝑢<1) (e) Pr(0.6<𝑢< 1)condition (conditional mean) standard deviation

0 1

Fig. 14. Uncertainty quantification. The MFS solve and evaluation can be
reinterpreted as conditioning of a Gaussian process where boundary values
are the observed data (a), from which we can compute the solution as the
conditional mean (b), as well as the conditional variance (c) to quantify the
uncertainty of the solution. This enables us to evaluate spatial probability
distributions where different solution ranges are expected (d,e).

GP vs. our approach. Let us also revisit the differences between

previous GP-based works and our approach presented here to clar-

ify our contributions. Clearly, Gaussian Processes are very similar

to MFS/BEM in the sense that they start from training points (our

boundary points) and evaluate prediction points (our target points).

The recent works we relied on to choose a variational inverse-

Cholesky factor [Guinness 2018; Schäfer et al. 2021a; Katzfuss and

Guinness 2021] compute a GP conditional mean (our PDE solution)

without separating solution and evaluation stages: it thus involves a

larger covariance matrix [𝑲 (𝑥, 𝑥),𝑲 (𝑥,𝒚); 𝑲 (𝒚, 𝑥),𝑲 (𝒚,𝒚)] of size
(𝐵+𝑇 )×(𝐵+𝑇 ), from which the conditional mean can be directly

deduced from sub-matrices of its resulting inverse-Cholesky factor

through a back-substitution after a matrix-vector operation. While

they show that this is efficient for interpolation with Matérn covari-

ance, their direct “training-to-prediction” approach with “prediction

points first” adapted to our case introduces significant errors in the

approximation. This is likely because our Green’s functions decay

slower thanMatérn’s and are more singular, and our regression prob-

lem is more extrapolatory than interpolatory in nature. Increasing 𝜌

to mitigate this problem is not a practical solution in our problems

due to the increase in the computational cost shown in Fig. 16. The

“prediction points last” approach of [Schäfer et al. 2021a] promises

significantly more accurate extrapolation, but is prohibitively ex-

pensive if there are too many target points — which is often the case

in MFS. Thus, we use a procedure closer to Kaporin’s original idea

of variational preconditioning, this time applied to dense matrices,
which achieves a better tradeoff between accuracy and cost by using

PCG with FMM, providing a fast, controllable way to correct the

approximate solve that the use of 𝑳S𝑳
T
S by itself would result in.

Alternatively, we could have used a joint reverse max-min ordering

on boundary and target points to compute efficient matrix-vector

products with 𝑲 using the approach of [Schäfer et al. 2021a], or

used the FMM matrix-vector product to improve the computational

efficiency of the “prediction points last” approach; we defer the

exploration of these alternatives to future work.

H -matrix based LU preconditioning. Because hierarchical matri-

ces are data-sparse, their LU factorization can be somewhat per-

formed more efficiently [Kriemann 2013]. Despite the superlinear

behavior of regular LU in memory and execution time, we tested the

“H -LU” approach to preconditioning using an existing library [Krie-

mann 2024] for both the computation of the preconditioner and its

use in the PCG. As Fig. 15 demonstrates (where the computational

time of the preconditioning phase before PCG iterations is observed

as the flat portion of the error curve, since no error decrease can

be witnessed during these precomputations), the LU factorization

leads to a great conditioning but at an unreasonable time cost. Us-

ing a more aggressive approximation for the hierarchical matrix

can speed up factorization, but the significant drop in precision

this creates prevents PCG iterations to converge as matrix-vector

multiplications are performed with theH -matrix.

5 CONCLUSIONS
In this paper, we provided a simple approach to significantly accel-

erate the Method of Fundamental Solutions and Boundary Element

Methods by offering an efficient preconditioner to solve bound-

ary integral equations through Preconditioned Conjugate Gradient.

ACM Trans. Graph., Vol. 43, No. 4, Article 77. Publication date: July 2024.



77:14 • Chen, Schäfer, Desbrun

Ours H-LU(𝜖 =10
−2 ) H-LU(𝜖 =10

−3 ) H-LU(𝜖 =10
−4 ) H-LU(𝜖 =10

−5 )

0 100 200

10
−10

10
0

time (s)

𝐸
𝑟
𝑟

2

𝐵=61.8𝐾

0 200 400 600

10
−14

10
−7

10
0

time (s)

𝐸
𝑟
𝑟

2

𝐵=123.3𝐾

0 500 1,000 1,500

10
−11

10
−5

10
1

time (s)

𝐸
𝑟
𝑟

2

𝐵=184.4𝐾

0 200 400 600

10
−13

10
−6

10
1

time (s)

𝐸
𝑟
𝑟

2

𝐵=245.6𝐾

0 200 400 600

10
−13

10
−6

10
1

time (s)

𝐸
𝑟
𝑟

2

𝐵=306.4𝐾

0 200 400 600 800

10
−13

10
−6

10
1

time (s)

𝐸
𝑟
𝑟

2

𝐵=367.3𝐾

Fig. 15. Comparison with H-LU. For this test, we use Poisson disk sam-
pling to generate a number of points randomly within a unit bounding box.
The right hand side vector is initialized with randomly 1 or −1 for each point.
Using the HLIBpro library [Kriemann 2024], the quality and speed of H-LU
preconditioner is affected by the H-arithmetic accuracy 𝜖 of its low-rank
approximations. While H-LU preconditioner can be moderately efficient
with low accuracy, the convergence of PCG becomes essentially limited.
Further increasing the accuracy quickly blows up the computational and
memory costs, especially for large problems. As the system size goes above
200𝐾 , H-LU with 𝜖 =10

−4 simply runs out of memory on our laptop; worse,
the error of the linear solve is still stuck at a high level compared to ours,
which shows no convergence issue (here, 𝜌 =2.5).

While researchers often avoid dense matrices in the belief that no

fast solver can handle them, we prove that this is not always the

case by drawing inspiration from the Gaussian Process literature

describing conditioning via constrained minimization: through the

computation of a sparse approximation of the inverse-Cholesky fac-

tor of a large and dense SPD matrix of a BIE, we show that we can

dramatically increase the efficiency of boundary solvers, without

even requiring surface or volumetric meshes.

Limitations. While our GPU-based factorization step has never

encountered breakdowns in all the examples we tried, it should be

noted that the local Cholesky decompositions it performs could

breakdown if the regularization parameter 𝜀 (Sec. 4.1) is chosen

too large, for instance, 10 times larger than the minimal spacing

between source points — as 𝑲 may no longer be PSD. Thankfully,

we want this 𝜀 to be tiny to stay as close as possible to the real

Green’s function, so this never happens in practical cases. How-

ever, this breakdown could also happen if there are points on top of

each other, thus creating degenerate 𝑲S𝑗 ,S𝑗 terms. While one could

simply filter these cases out in the first place, it could be interest-

ing to explore LDL
T

factorization to compute 𝑳S𝑗 , 𝑗 as it applies

to indefinite matrices. While theoretical guarantees may not hold

anymore, we may still see improved convergence in practice. Fi-

nally, using a least-squares matrix instead of an asymmetric BIE may

sound like a bad idea as it squares the condition number. Yet, the

efficacy of Kaporin’s variational preconditioner almost compensates

for this practice: as an example, we solved a least-square problem

for Laplace’s BIE with about 16𝐾 source points; compared to the

original BIE, the least-squares version only needed two extra PCG

iterations to converge below an error of 10
−5

.

Future works. In this work, we tested our preconditioner on three

linear elliptic PDEs, but this approach should be applicable to many

other problems arising from geometry processing and physically-

based simulation. For instance, applying our method to RBF-based

surface reconstruction seems quite straightforward [Carr et al. 2001].

Also, we used a black-box FMM for accelerating matrix-vector prod-

ucts. Implementing PDE-specific FMM could further improve the

run-time performance of both solution and evaluation stages. Alter-

natively, theH -matrix representation could be potentially applica-

ble for even faster matrix-vector product if the need for accuracy is

less stringent, so we plan on evaluating if this algebraic version of

FMM can further accelerate our approach. In the future, it could be

very interesting to investigate efficient solvers for nonlinear PDEs

using Gaussian processes as in [Owhadi 2023] to continue exploiting

the connection we leveraged: indeed, we believe that analyzing and

solving PDEs from a stochastic point of view could be helpful in

reducing computational cost and improving reliability for virtual

simulations of our real world.
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A VARIATIONAL FORMULATIONS
The preconditioner we present in this paper is the minimizer of

the Kaporin condition number under sparsity constraints, but its

expression in Eq. (7) can be also derived from two other variational

formulations. We very briefly explain these different formulations.

Kaporin condition number. First, we prove Eq. (7) is a minimizer

of 𝜅
Kap

. According to [Kaporin 1994], the Kaporin condition number

for the 𝑳S-preconditioned system of size 𝐵×𝐵 is defined as

𝜅
Kap

=
1

𝐵

tr(𝑲𝑳S𝑳
T
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T
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.

By exploiting the properties of matrix trace and matrix determinant

and by defining 𝑲S𝑗 ,S𝑗 =𝑼S𝑗 ,S𝑗 𝑼
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, we can expand 𝜅
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The inequality holds because of both the inequality of arithmetic and

geometric means and of Cauchy-Schwarz inequality. The minimum

is reached when 𝑳S𝑗 , 𝑗 and 𝑲−1

S𝑗 ,S𝑗
e𝑗 is collinear and the values of

𝑳T
S𝑗 , 𝑗

𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 are the same for all 𝑗 . Thus, 𝑳T
S𝑗 , 𝑗

𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 can be

normalized to 1, which results in Eq. (7).

Constrained least-squares problem. [Kolotilina and Yeremin 1993]

figured out that Eq. (7) (and equivalently, Eq. (8)) is also the mini-

mizer of a constrained least-square problem, formulated as

argmin
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where 𝑼 is the upper triangular Cholesky factor such that 𝑲 =𝑼𝑼 T
.

To solve this constrained problem, we first write its Lagrangian as:
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where 𝜆 𝑗 ’s are 𝐵 Lagrangian multipliers. By differentiating L w.r.t.

𝑳S𝑗 , 𝑗 , the optimality condition reads

𝜕L
𝜕𝑳S𝑗 , 𝑗

= −2𝑼 𝑗, 𝑗 e𝑗 + 2(1 + 𝜆 𝑗 )𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 = 0,

from which 𝑳S𝑗 , 𝑗 is solved and represented by

𝑳S𝑗 , 𝑗 =
𝑼 𝑗, 𝑗

1 + 𝜆 𝑗
𝑲−1

S𝑗 ,S𝑗
e𝑗 =

𝑼 2

𝑗, 𝑗

1 + 𝜆 𝑗
𝑼 −TS𝑗 ,S𝑗 e𝑗 . (21)

Finally, each Lagrange multiplier 𝜆 𝑗 is found by substituting Eq. (21)

into the constraint, yielding

𝑳T
S𝑗 , 𝑗

𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 − 1 =
𝑼 4

𝑗, 𝑗

(1 + 𝜆 𝑗 )
2
− 1 = 0.

Thus, 𝑼 2

𝑗, 𝑗/(1+𝜆 𝑗 )=±1 and the minimizer Eq. (21) reduces to Eq. (8).

KL divergence. Recently, [Schäfer et al. 2021a] found that Eq. (7)

also minimizes the KL divergence for two zero-mean Gaussian dis-

tributions of covariance 𝑲 and (𝑳S𝑳
T
S)
−1

respectively. For these

two covariance matrices, the KL divergence reduces to

D𝐾𝐿

(
𝑲 ,

(
𝑳S𝑳

T
S
)−1

)
= − log det

(
𝑲𝑳S𝑳

T
S
)
+ tr

(
𝑲𝑳S𝑳

T
S
)
− 𝐵

= − log det (𝑲 ) − log det

(
𝑳S𝑳

T
S
)
+ tr

(
𝑳T
S𝑲𝑳S

)
− 𝐵

=
∑︁

𝑗
𝑳T
S𝑗 , 𝑗

𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 − 2

∑︁
𝑗

log

(
𝑳 𝑗, 𝑗

)
+ const.

(22)

Computing the optimality condition minimizing the KL divergence

w.r.t. each column 𝑳S𝑗 , 𝑗 leads to

𝜕D𝐾𝐿

𝜕𝑳S𝑗
= 2𝑲S𝑗 ,S𝑗 𝑳S𝑗 , 𝑗 −

2

𝑳 𝑗, 𝑗
e𝑗 = 0. (23)

Again, Eq. (7) is the solution of Eq. (23). In fact, when (𝑳S𝑳
T
S)
−1

approximates 𝑲 well, the KL divergence is numerically close to the

Frobenius norm, as illustrated in Fig. 7: the reason is that as the term

𝑳 𝑗, 𝑗𝑼 𝑗, 𝑗 in Eq. (20) approaches 1, it will approximate log(𝑳 𝑗, 𝑗𝑼 𝑗, 𝑗 )+1

well.
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