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RECAP BEM

• Boundary Element Method (BEM)
− Turn volumetric differential equations into boundary integral equations (BIE)

− No need for volumetric tessellation, slower growth of the problem size

− Works for infinite large domains

• Two stages of BEM
− SOLVE for unknown boundary data from given boundary conditions

• E.g., boundary charges producing an electric potential field

−  INTERPOLATE / EXTRAPOLATE the solution at arbitrary target points from 
boundary data
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BOTTLENECK: FINDING BOUNDARY DATA
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PDE Representation of the solution BIE
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NUMERICAL CHALLENGES OF SOLVING BIES

• The linear system is always dense
− Green’s functions have non-zero values everywhere

− Storing the entire system matrix is impossible for big problems 

• 70G for 100k boundary samples; assembly time is large too!

− Direct solvers have cubic complexity

• The linear system is often ill-conditioned*
− High-frequency vibrations in 𝜎 get smoothed out after integration

• So very different 𝜎‘s map to similar 𝑏, meaning that the BIE is almost degenerate

− Iterative solvers often struggle to converge
• multigrid approaches too memory hungry, H-matrices too inaccurate 

In practice, BIE of ~25K unknowns in recent graphics papers…

There has to be a better way…

Main culprit: 
smoothness of the Green’s function

*Fredholm integral equation of the first kind

BIE

𝑲𝒔 = 𝒃
Linear system



SYMMETRIC CASE: INVERSE CHOLESKY FACTORIZATION

§ [Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

§ Kaporin’s construction for 𝐿! [Kaporin 1994]

§ Properties
− Massively parallel: each column of 𝐿! is computed independently of others. Perfect for GPUs!

− Memory efficient: no need to assemble the global BIE matrix. 

− Stable: no breakdowns will occur

− Variational interpretation(s): minimizing Kaporin’s condition number*, KL-divergence, and a constrained quadratic form

𝐾𝑠 = 𝑏 𝐾!" ≈ 𝐿#𝐿#$ 𝑠 ≈ 𝐿!𝐿"#𝑏
𝐿𝒮#,%
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MESHLESS VS. MESH-BASED APPROACHESLast year: 𝝓𝒊 = 𝝍𝒊 = 𝜹(𝒙 − 𝒙𝒊)
Symmetric, meshless approach

This year: 𝝓𝒊 ≠ 𝝍𝒊
Asymmetric, more general approach

Discretized BIE

Same number 
of unknowns!



§ Solve the least-squares problem 𝑲𝑻𝑲𝒔 = 𝑲𝑻𝒃?

§ We leverage an inverse LU factorization to precondition BIE matrices

§ Generalizing Kaporin’s construction

ASYMMETRIC CASE: INVERSE LU FACTORIZATION

𝐾𝑠 = 𝑏 𝑠 ≈ 𝐿!𝑈!𝑏

𝐿)#,%

𝑈%,)# Forgoing symmetry opens the 
door to a variety of BIEs with 
diverse discretization choices.



Fine-to-coarse 
reordering

REORDERING

§ Goal: evenly distributing point samples
− Farthest point sampling, i.e., coarse-to-fine                                                      

− Reverse it                                 , i.e., fine-to-coarse 

REORDERING & SPARSITY PATTERN

SPARSITY PATTERN

§ Capturing those “important” nonzero fill-ins
− Length scale returned in coarse-to-fine ordering

− Lower-triangular, multiscale sparsity pattern



THE BASIS OF EFFECTIVE SPARSITY: 
SCREENING EFFECT

• Statistical description of the screening effect
• A stochastic process with smooth kernels implies long-range correlations between point samples

• Conditioning a smooth process on values near a target point weakens the target’s correlation with more distant points



PROOF OF CONCEPT
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AN INTERESTING PARADOX

• Smoothness of the Green’s function responsible for all the 
numerical challenges

• … but also key to solve these problems
− because the information provided by nearby points renders that of 

distant points redundant

− proper reordering disentangles the complex correlations between points

© Google Gemini



RESULTS



DIFFUSION CURVES

Solution representation

BIE

Fredholm integral equation of the first kind

[Orzan et al. 2008]
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• Diffusing van Gogh’s “Irises”
• 6.6M boundary elements
• 64M pixels in total

• Our inverse LU precond.
• 20 iterations to reach error 

below 0.001
• Cost 15 mins

• Jacobi precond.
• 2.1 days to reach the same 

level of error, 200x slower



MAGNETOSTATICS

[Ni et al. 2024]

Fredholm integral equation of the second kind

BIE

Solution representation



MAGNETOSTATICS ON NON-SMOOTH GEOMETRY

CAREFUL

Screening effect 

much weaker!!



MAGNETOSTATICS ON NON-SMOOTH GEOMETRY



MIXED BOUNDARY CONDITION
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Solution representation

BIE

Known 𝒖 = 𝒈

Known 𝝏𝒏𝒖 = 𝒃	

Solve for 𝝏𝒏𝒖

Solve for 𝒖



MIXED BOUNDARY CONDITIONS
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LIMITATION AND FUTURE WORK

• Debased efficiency due to weakened screening effects
− Screening effect hinges on the smoothness of the kernel functions

− Certain cases that reduce the smoothness of the kernel

• High-frequency Helmholtz equation

• Addition of a positive diagonal matrix, i.e., ∫ 𝜕𝐺 + 𝛼𝐼𝑑

• Mix of different kernels, e.g., BIE for mixed boundary conditions

• Future work
− Explore more effective strategies for above issues

− Extension to least-squares problems for rectangular systems

− Boundary-only or meshless methods for nonlinear PDEs
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