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[James and Pai 1999]

[Huang et al. 2020]
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RECAP BEM

* Boundary Element Method (BEM)
- Turn volumetric differential equations into boundary integral equations (BIE)
- No need for volumetric tessellation, slower growth of the problem size

- Works for infinite large domains
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 Two stages of BEM e

- Works for infinite large domains

- SOLVE for unknown boundary data from given boundary conditions
+ E.g., boundary charges producing an electric potential field

- INTERPOLATE / EXTRAPOLATE the solution at arbitrary target points from
boundary data
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BOTTLENECK: FINDING BOUNDARY DATA

PDE

Representation of the solution

BIE

|
X € Q, Au=0 g,_l,xeRd\I‘, u(x) =

oG (x,y)
T any

o(y) d4y - A G(x,y)r(y) dA
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Double-layer potential

x €T, u(x) = b(x) or

Inu(x) = g(x)

Single-layer potential
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BOTTLENECK: FINDING BOUNDARY DATA

PDE
|
xeQ Au=0 g,_l,xeRd\r, u(x) =

BIE

oG (x,y) B | x €T, u(x) = b(x) or
r ony o(y) ddy I G(xy)r(y) dAymmmy, dnu(x) = g(x)

Representation of the solution

Double-layer potential  Single-layer potential

[u(x)]I‘ =0 [u(x)]I‘ — O'(X) u(x)lxeRd\Q =0

Single-layer only Doubl-layer only Single- and double-layer



NUMERICAL CHALLENGES OF SOLVING BIES

BIE o :
TEVAVASS
x €T, u(x) =b(x) or
| Ks=0b>b
dnu(x) = g(x)

* The linear system is always dense

- Green’s functions have non-zero values everywhere
- Storing the entire system matrix is impossible for big problems
70G for 100k boundary samples; assembly time is large too!

- Direct solvers have cubic complexity

* The linear system is often ill-conditioned*

- High-frequency vibrations in o get smoothed out after integration
So very different o‘s map to similar b, meaning that the BIE is almost degenerate

- Iterative solvers often struggle to converge

multigrid approaches too memory hungry, H-matrices too inaccurate

In practice, BIE of ~25K unknowns in recent graphics papers...

There has to be a better way...
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*Fredholm inteqgral equation of the first kind

x €T, AG(X, y)o(y) dAy = b(x)




SYMMETRIC CASE: INVERSE CHOLESKY FACTORIZATION £

= [Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

= Kaporin’s construction for L¢ [Kaporin 1994] Ls e;=(1,0,...,0)" eR"/
-1 LS]]
K. . e;
LS J ’ V] - 1..B, LS.j
’ T ¢~—1 :
‘\_

= Properties

Massively parallel: each column of Lg is computed independently of others. Perfect for GPUs!

Memory efficient: no need to assemble the global BIE matrix.

Stable: no breakdowns will occur

* 1 tr(M
Variational interpretation(s): minimizing Kaporin's condition number*, KL-divergence, and a constrained quadratic form  Kgap(M) = Em



Last year: ¢; = ¢Y; = 6(x — x;)
Symmetric, meshless approach
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(/r /r #(x)Gy)Y;(3) dAydAz) 9 = /rb(x)qﬁi (x) dAy

Discretize

Same number
of unknowns!

PN .

This year: ¢; # yY;
Asymmetric, more general approach




ASYMMETRIC CASE: INVERSE LU FACTORIZATION &

= Solve the least-squares problem KTKs = K"b?

= We leverage an inverse LU factorization to precondition BIE matrices

Ks = bEIK-l ~ L3U3:>S ~ L5USb

= Generalizing Kaporin’s construction

Forgoing symmetry opens the
door to a variety of BIEs with

diverse discretization choices.




REORDERING & SPARSITY PATTERN

REORDERING SPARSITY PATTERN
= Goal: evenly distributing point samples = Capturing those “important” nonzero fill-ins
- Farthest point sampling, i.e., coarse-to-fine - Length scale returned in coarse-to-fine ordering

[ =argmax min

dist(y,. y; ),
¢ pe{ok-1} Y y”’)|

- Reverse it P={ig_y, ..., 11,1y}, i.e., fine-to-coarse

S:={(i, ])ll > _] and dist(xl-, x]) = Pmin(i’ [])}

last 50 last 150 last 250



THE BASIS OF EFFECTIVE SPARSITY:

« Statistical description of the screening effect
« A stochastic process with smooth kernels implies long-range correlations between point samples

« Conditioning a smooth process on values near a target point weakens the target’s correlation with more distant points

G(G,i)—G(>,:)GCG:, )76 G, D)
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After
elimination




PROOF OF CONCEPT

Ground-truth
pattern

Max-min
pattern



PROOF OF CONCEPT

coarse intermediate

Ground-truth
pattern

Max-min
pattern



AN INTERESTING PARADOX

- Smoothness of the Green’s function responsible for all the - ©Google Gemini
numerical challenges '
... but also key to solve these problems

- because the information provided by nearby points renders that of
distant points redundant

— proper reordering disentangles the complex correlations between points
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DIFFUSION CURVES

[Orzan et al. 2008] Solution representation
A \\ x € R2\T, u(x) = / G(x,y)o(y)dAy.
e\ I
BIE

x €T, ‘/I:G(X, y)o(y) dAy = b(x),

Fredholm integral equation of the first kind
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Diffusing van Gogh’s “Irises”
* 6.6M boundary elements
* 64M pixels in total

Our inverse LU precond.
e 20 iterations to reach error
below 0.001

 Cost 15 mins

Jacobi precond.
- 2.1 days to reach the same
level of error, 200x slower




MAGNETOSTATICS

_A

V- po(Hg + M) =0,

Hq(x) = —Vu(x) u(x) = [ G(x,y)o(y)dAy.

[Ni et al. 2024]

Solution representation

BIE

LV X Hg =0,
BIE
2+ y oG (X,y)
x €T, 27 o(x)|+ ‘/1: oy o(y) dAy = Hey - 1.

xeT, [Gluy)o(y) da, =b(x)

Fredholm integral equation of the first kind

Fredholm integral equation of the second kind




MAGNETOSTATICS ON NON-SMOOTH GEOMETRY

CAREFUL
Screening effect

much weaker!!
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MAGNETOSTATICS ON NON-SMOOTH GEOMETRY ¢
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MIXED BOUNDARY CONDITION

Solution representation

B IG(x,y) ou(y)
u(x) = —ﬁ on, u(y) dAy+‘/l:G(x,y) on, dAy

BIE
1-xp(x) dG(x,y) ou(y)
. u(X)+/I‘N - u(y)dAy - FS(X,Y) on, dAy
=y [V aay + [ Gxy)g(y)da,
2 r, 9ny I'n




MIXED BOUNDARY CONDITIONS

10~ 1

10~2
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rel. error

B =51092l6, p=6
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LIMITATION AND FUTURE WORK

« Debased efficiency due to weakened screening effects

- Screening effect hinges on the smoothness of the kernel functions

- Certain cases that reduce the smoothness of the kernel
* High-frequency Helmholtz equation
+ Addition of a positive diagonal matrix, i.e., [.0G + ald
» Mix of different kernels, e.g., BIE for mixed boundary conditions
* Future work
- Explore more effective strategies for above issues
- Extension to least-squares problems for rectangular systems

- Boundary-only or meshless methods for nonlinear PDEs
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