

RECAP BEM

- Boundary Element Method (BEM)
 - Turn volumetric differential equations into boundary integral equations (BIE)
 - No need for volumetric tessellation, slower growth of the problem size
 - Works for infinite large domains

RECAP BEM

- Boundary Element Method (BEM)
 - Turn volumetric differential equations into boundary integral equations (BIE)
 - No need for volumetric tessellation, slower growth of the problem size
 - Works for infinite large domains
- Two stages of BEM
 - SOLVE for unknown boundary data from given boundary conditions
 - E.g., boundary charges producing an electric potential field

RECAP BEM

- Boundary Element Method (BEM)
 - Turn volumetric differential equations into boundary integral equations (BIE)
 - No need for volumetric tessellation, slower growth of the problem size
 - Works for infinite large domains
- Two stages of BEM
 - SOLVE for unknown boundary data from given boundary conditions
 - E.g., boundary charges producing an electric potential field
 - INTERPOLATE / EXTRAPOLATE the solution at arbitrary target points from boundary data

BOTTLENECK: FINDING BOUNDARY DATA

BOTTLENECK: FINDING BOUNDARY DATA

$$[u(\mathbf{x})]_{\Gamma}=0$$

$$[u(\mathbf{x})]_{\Gamma} = \sigma(\mathbf{x})$$

Double-layer potential

$$u(\mathbf{x})|_{\mathbf{x}\in\mathbb{R}^{d}\setminus\Omega}=0$$

Single-layer potential

NUMERICAL CHALLENGES OF SOLVING BIES

The linear system is always dense

- Green's functions have non-zero values everywhere
- Storing the entire system matrix is impossible for big problems
 - 70G for 100k boundary samples; assembly time is large too!
- Direct solvers have cubic complexity

The linear system is often ill-conditioned*

- High-frequency vibrations in σ get smoothed out after integration
 - So very different σ 's map to similar b, meaning that the BIE is almost degenerate
- Iterative solvers often struggle to converge
 - multigrid approaches too memory hungry, H-matrices too inaccurate

In practice, BIE of ~25K unknowns in recent graphics papers...

There has to be a better way...

Main culprit: smoothness of the Green's function

*Fredholm integral equation of the first kind

$$\mathbf{x} \in \Gamma$$
, $\int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}} = b(\mathbf{x})$

SYMMETRIC CASE: INVERSE CHOLESKY FACTORIZATION

[Chen et al. 2024] computed inverse Cholesky factors to accelerate PCG

$$Ks = b = K^{-1} \approx L_S L_S^T \Rightarrow s \approx L_S L_S^T b$$

Kaporin's construction for L_S [Kaporin 1994]

$$\boldsymbol{L}_{\mathcal{S}_{j},j} = \frac{\boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}{\sqrt{\boldsymbol{e}_{j}^{\mathsf{T}} \boldsymbol{K}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \boldsymbol{e}_{j}}}, \quad \forall j = 1..B,$$

- Properties
 - Massively parallel: each column of L_S is computed independently of others. Perfect for GPUs!
 - Memory efficient: no need to assemble the global BIE matrix.
 - Stable: no breakdowns will occur
 - Variational interpretation(s): minimizing Kaporin's condition number*, KL-divergence, and a constrained quadratic form

$$\kappa_{\text{Kap}}(M) = \frac{1}{B} \frac{\text{tr}(M)}{\det(M)^{1/B}}$$

Last year: $\phi_i = \psi_i = \delta(x - x_i)$ Symmetric, meshless approach This year: $\phi_i \neq \psi_i$ Asymmetric, more general approach

ASYMMETRIC CASE: INVERSE LU FACTORIZATION

- Solve the least-squares problem $K^TKs = K^Tb$?
- We leverage an inverse LU factorization to precondition BIE matrices

$$Ks = b = K^{-1} \approx L_S U_S \Rightarrow s \approx L_S U_S b$$

Generalizing Kaporin's construction

$$\begin{cases} \mathbf{L}_{\mathcal{S}_{j},j} = \frac{\mathbf{G}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}{\mathbb{e}_{j}^{\mathsf{T}} \mathbf{G}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-1} \mathbb{e}_{j}}, \\ \mathbf{U}_{j,\mathcal{S}_{j}}^{\mathsf{T}} = \mathbf{G}_{\mathcal{S}_{j},\mathcal{S}_{j}}^{-\mathsf{T}} \mathbb{e}_{j}, \end{cases}$$

Forgoing symmetry opens the door to a variety of BIEs with diverse discretization choices.

REORDERING & SPARSITY PATTERN

REORDERING

- Goal: evenly distributing point samples
 - Farthest point sampling, i.e., coarse-to-fine

$$i_k = \underset{q}{\operatorname{argmax}} \underset{p \in \{0, k-1\}}{\min} \operatorname{dist}(\boldsymbol{y}_q, \boldsymbol{y}_{i_p}),$$

- Reverse it $P = \{i_{B-1}, ..., i_1, i_0\}$, i.e., fine-to-coarse

SPARSITY PATTERN

- Capturing those "important" nonzero fill-ins
 - Length scale returned in coarse-to-fine ordering

- Lower-triangular, multiscale sparsity pattern

$$S := \{(i, j) | i \ge j \text{ and } \operatorname{dist}(x_i, x_j) \le \rho \min(\ell_i, \ell_j) \}$$

THE BASIS OF EFFECTIVE SPARSITY: SCREENING EFFECT

- Statistical description of the screening effect
 - A stochastic process with smooth kernels implies long-range correlations between point samples
 - Conditioning a smooth process on values near a target point weakens the target's correlation with more distant points

PROOF OF CONCEPT

PROOF OF CONCEPT

intermediate fine coarse **Max-min**

Ground-truth pattern

pattern

AN INTERESTING PARADOX

- Smoothness of the Green's function responsible for all the numerical challenges
- ... but also key to solve these problems
 - because the information provided by nearby points renders that of distant points redundant
 - proper reordering disentangles the complex correlations between points

DIFFUSION CURVES

[Orzan et al. 2008]

Solution representation

$$\mathbf{x} \in \mathbb{R}^2 \setminus \Gamma$$
, $u(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}}$.

BIE

$$\mathbf{x} \in \Gamma$$
, $\int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}} = b(\mathbf{x})$,

Fredholm integral equation of the first kind

THE PREMIER CONFERENCE & EXHIBITION ON COMPUTER GRAPHICS & INTERACTIVE TECHNIQUES

- Diffusing van Gogh's "Irises"
 - **6.6M** boundary elements
 - 64M pixels in total
- Our inverse LU precond.
 - 20 iterations to reach error below 0.001
 - Cost 15 mins
- Jacobi precond.
 - 2.1 days to reach the same level of error, 200x slower

MAGNETOSTATICS

$$\begin{cases} \nabla \cdot \mu_0 (\mathbf{H}_{\Omega} + \mathbf{M}) = 0, \\ \nabla \times \mathbf{H}_{\Omega} = 0, \end{cases} \mathbf{H}_{\Omega}(\mathbf{x})$$

$$\mathbf{H}_{\Omega}(\mathbf{x}) = -\nabla u(\mathbf{x})$$

Solution representation

$$u(\mathbf{x}) = \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}}.$$

BIE

$$\mathbf{x} \in \Gamma$$
, $\frac{2+\chi}{2\chi} \sigma(\mathbf{x}) + \int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{x}}} \sigma(\mathbf{y}) dA_{\mathbf{y}} = \mathbf{H}_{\text{ext}} \cdot \mathbf{n}$.

BI

$$\mathbf{x} \in \Gamma$$
, $\int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \sigma(\mathbf{y}) dA_{\mathbf{y}} = b(\mathbf{x})$,

Fredholm integral equation of the first kind

Fredholm integral equation of the second kind

MAGNETOSTATICS ON NON-SMOOTH GEOMETRY

CAREFUL

Screening effect

much weaker!!

MAGNETOSTATICS ON NON-SMOOTH GEOMETRY

MIXED BOUNDARY CONDITION

Solution representation

$$u(\mathbf{x}) = -\int_{\Gamma} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} u(\mathbf{y}) \, dA_{\mathbf{y}} + \int_{\Gamma} G(\mathbf{x}, \mathbf{y}) \frac{\partial u(\mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} \, dA_{\mathbf{y}}$$

BIE

$$\frac{1 - \chi_D(\mathbf{x})}{2} u(\mathbf{x}) + \int_{\Gamma_N} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} u(\mathbf{y}) dA_{\mathbf{y}} - \int_{\Gamma_D} G(\mathbf{x}, \mathbf{y}) \frac{\partial u(\mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} dA_{\mathbf{y}}
= -\frac{\chi_D(\mathbf{x})}{2} b(\mathbf{x}) - \int_{\Gamma_D} \frac{\partial G(\mathbf{x}, \mathbf{y})}{\partial \mathbf{n}_{\mathbf{y}}} b(\mathbf{y}) dA_{\mathbf{y}} + \int_{\Gamma_N} G(\mathbf{x}, \mathbf{y}) g(\mathbf{y}) dA_{\mathbf{y}}$$

MIXED BOUNDARY CONDITIONS

LIMITATION AND FUTURE WORK

- Debased efficiency due to weakened screening effects
 - Screening effect hinges on the smoothness of the kernel functions
 - Certain cases that reduce the smoothness of the kernel
 - High-frequency Helmholtz equation
 - Addition of a positive diagonal matrix, i.e., $\int_{\Gamma} \partial G + \alpha I d$
 - · Mix of different kernels, e.g., BIE for mixed boundary conditions

Future work

- Explore more effective strategies for above issues
- Extension to least-squares problems for rectangular systems
- Boundary-only or meshless methods for nonlinear PDEs

© 2025 SIGGRAPH. ALL RIGHTS RESERVED.

Proud to be a Special Interest Group Within the Association for Computing Machinery.

Sponsored by ACM**SIGGRAPH**