

SAARBRÜCKEN EUROGRAPHICS 2023

Robust Pointset Denoising of Piecewise-Smooth Surfaces through Line Processes

Jiayi Wei^{1,2}, Jiong Chen¹, Damien Rohmer¹, Pooran Memari^{1,2}, Mathieu Desbrun^{2,1}

¹LIX, Ecole Polytechnique/CNRS, IP Paris, France ²INRIA Saclay, France

EUROGRAPHICS 2023

Background

Scanning is ubiquitous and paramount

•from medical and commerce applications to art preservation

Denoising the raw output pointset and meshing it are well studied

•IF ONLY little noise and very few outliers

But... cheaper sensors, aggregated data = noisier, outlier-ridden pointsets!

Konica Minolta Vivid 9i ~\$10K in 2004

Technical Challenges

•Challenge 1: Being agnostic to noise models

•Challenge 2: Identifying & preserving sharp features

Noisy point clouds

Blue: detected sharp edges

Previous Work Learning-based Methods

Advantage:

•Very good performance for specific sensors **Disadvantage:**

•Usually fail for other sensors or merged data

Learning-based methods [Rakotosaona19,Zhang21]

Previous Work Optimization-based Methods

ℓ₀ minimization [He13]

non-local dictionary-based method [Digne et al. 18]

MLS (moving least squares)-based methods [Alexa at al. 03, Guennebaud et al. 07]

Advantage:

•Work well for specific applications

Disadvantage:

Require prior knowledge on the inputsHigh computational cost

•Suffer over-smoothing / over-sharpening

LOP (locally optimal projection)-based methods [Huang et al. 09, Liao et al. 13]

SAARBRÜCKEN EUROGRAPHICS 2023

Previous Work Filtering-based Methods

Spectral-based methods [Digne et al. 2012, Zeng et al. 2019]

Advantage:

•Least amount of assumption on the input data

Disadvantage:

•Pre-canned formula

•No control over filtering except for #iterations

Normal filtering [Huang et al. 2013, Digne et al. 2017]

SAARBRÜCKEN EUROGRAPHICS 2023

Method

Mathematical Background Robust Statistics & Line Process (Outlier Process)

Fandisk model and its noisy point cloud

Goals of Robust Statistics

• "Describe the structure best fitting the bulk of the data";

 "identify the deviating data points (outliers) for further treatment"

Our approach at a glance

Goal: a variational approach

- Least amount of assumption on inputs
- balance between local fit and global smoothness
- convenience of *line processes* for robustness and computational efficiency

Local (tangent plane) fitting:

- Line process (Ii \square) helps to reject outliers

Global piecewise smoothness:

- Line process (m_i□) helps with feature preservation

Formulation - Other trials

$$\begin{split} \min_{c} E &= E_{local} + \lambda E_{global} \\ &= \sum_{patch \ i \ j \in \mathcal{N}(i)} \left[\mathbf{c}_i \mathbf{P}_j \mathbf{P}_j^{\mathsf{T}} \mathbf{c}_i^{\mathsf{T}} m_{ij} + \Psi(m_{ij}) \right] \overset{\text{Has degenerated}}{\stackrel{\text{solution: } \mathbf{c} = \mathbf{0}}{\underset{i, \ j \in \mathcal{E}}{\overset{\text{solution: } \mathbf{c} = \mathbf{0}}{\underset{i, \ j \in \mathcal{E}}{\overset{\text{solution: } \mathbf{c} = \mathbf{0}}{\overset{\text{solution: } \mathbf{c} = \mathbf{0}}} |\mathbf{c}_i - \mathbf{c}_j||^2 |l_{ij} + \Psi(l_{ij}) \right] \end{split}$$

Add a constraint:
$$||\mathbf{c}_i|| = 1$$

Formulation - Other trials

$$\begin{split} \min_{c} E &= E_{local} + \lambda E_{global} \\ &= \sum_{patch \ i \ j \in \mathcal{N}(i)} \left[\mathbf{c}_i \mathbf{P}_j \mathbf{P}_j^{\mathsf{T}} \mathbf{c}_i^{\mathsf{T}} \underline{m}_{ij} + \Psi(m_{ij}) \right] \\ &= \sum_{patch \ i \ j \in \mathcal{N}(i)} \left[\mathbf{c}_i \mathbf{P}_j \mathbf{P}_j^{\mathsf{T}} \mathbf{c}_i^{\mathsf{T}} \underline{m}_{ij} + \Psi(m_{ij}) \right] \\ &= \sum_{i, j \in \mathcal{E}} \left[0 \text{ cal fitting} \\ \text{ solution: } \mathbf{c} = 0 \\ i, j \in \mathcal{E} \\ \text{ solution: } \mathbf{c} = 0 \\ i, j \in \mathcal{E} \\ \text{ solution: } \mathbf{c} = 0 \\ \text{ solution:$$

Formulation - Other trials

$$\begin{split} \min_{c} E &= E_{local} + \lambda E_{global} \\ &= \sum_{patch \ i \ j \in \mathcal{N}(i)} \left[\mathbf{c}_i \mathbf{P}_j \mathbf{P}_j^{\mathsf{T}} \mathbf{c}_i^{\mathsf{T}} \underline{m}_{ij} + \Psi(m_{ij}) \right] \overset{\text{Has degenerated}}{\underset{i, \ j \in \mathcal{E}}{\overset{\text{solution: } \mathbf{c} = \mathbf{0}}{\underset{i, \ j \in \mathcal{E}}{\overset{\text{solution: } \\\mathbf{0}}{\underset{i, \ j \in \mathcal{E}}{\overset{i, \ j \in \mathcal{E}}{\overset{\text{s$$

without s

with s

Final Formulation

$$\underset{\mathbf{H},\mathbf{T},\mathbb{L},\mathbb{M},\mathbb{S}}{\min} \quad \underbrace{\frac{1}{2} \sum_{i=1}^{n} \sum_{j \in N(i) \cup \{i\}} \alpha_{i} \left[\mathbf{h}_{i}^{t} \, \bar{\mathbf{q}}_{j} \bar{\mathbf{q}}_{j}^{t} \, \mathbf{h}_{i} \, l_{ij} + \Psi_{\mu_{l}}(l_{ij}) \right]}_{\text{local fitting}}}_{\text{local fitting}} \\
+ \underbrace{\frac{\lambda}{2} \sum_{(i,j) \in M} \beta_{ij} \left[||\mathbf{t}_{i} - s_{ij} \, \mathbf{t}_{j}||^{2} \, m_{ij} + \Psi_{\mu_{m}}(m_{ij}) \right]}_{\text{piecewise smoothness}}}_{\text{piecewise smoothness}} \\
+ \underbrace{\frac{\eta}{2} \sum_{i=1}^{n} \alpha_{i} ||\mathbf{h}_{i} - \mathbf{t}_{i}||^{2}}_{\text{stitching}} \quad ||\mathbf{h}_{i}|| = 1 \; \forall i \in [1, n].$$

Advantages:

- Least amount of assumptions on the inputs
- **Robust** local estimates, feature preservation
- Easy to optimize (block-coordinate descent)
- Good convergence from arbitrary initializations (in practice)

Key idea: *block-coordinate descent* method

IROGRAPHICS

Local fitting

- Update local tangent plane *H*
 - ≈ solve eigenvalue problems of size 4x4 in parallel
- Update local fitting line process L
 - **closed-form solution** related to μ_1 , **h**

Piecewise smoothness

- Update tangent plane **T**
 - = solve a sparse SPD linear system (symmetric positive definite)
- Update piecewise smoothness line process M
 - **closed-form solution** related to μ_m , **t**
- Update normal-flipping variable S

 closed-form solution related to t

Summary of Our Approach

•Generic tool in the denoising toolbox based on robust estimator •other examples: the family of nonlinear normal filters [Yadav et al. 2020]

•From robust estimator to line process

non-linear optimization -> block-descent optimization
detects outliers / sharp features
fast and stable

Common M-estimators [Yadav et al. 2020]

SAARBRÜCKEN EUROGRAPHICS 2023

Results

Results: Robustness to outliers

Input:

•Noisy kitten model (~25k points) with manually added outliers

Output:

Denoised pointsets

•Surface reconstruction for visual purposes

Results: Robustness to real data

Input:•Real scanned data (mesh) from Kinect

Results: Robustness to Gaussian Noise (stress test)

Input:

•CAD models with a **very large noise level** (Gaussian noise with variance 3% of bounding box)

Results: Visualizing Outliers and Features

- **Outlier Indicator** via *I* (local fitting) Ο
 - Color-coded line segment = $min(l_{ij}, l_{ji})$

feature indicator via *m* (global smoothness)

Results: Performance

Large-scale denoising

Linear solver: Multigrid-preconditioned conjugate method (amg-pcg)

Comparison with other methods

Methods	Bilateral	APSS	RIMLS	GLR	PointCleanNet	Ours
RunTime	13.31s	19.05s	35.45s	400s	438s	16.21s

Accessory: 50K points

Limitations and Future Work

- Dealing with thin structure
 - adaptive selectivity of line process
- Restricted to low-order fitting
 - quadric fitting?
- Better post-treatment of detected sharp features

SAARBRÜCKEN EUROGRAPHICS 2023

Thank you!

Complementary: Penalty function

[Black1996]: Black, Michael J., and Anand Rangarajan. "On the unification of line processes, outlier rejection, and robust statistics with applications in early vision." International journal of computer vision 19.1 (1996): 57-91.

Complementary: Effects of parameters

Relies on 3 main parameters: •Selectivity μ_m and μ_1 •Smoothness strength λ

