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Fig. 1. Knotting. The bow knot example (on the top, with 142K triangles) and the reef knot example (on the bottom, with 71K triangles) are presented. In this
work, we develop a two-way method for safe and fast collision handling in deformable body simulation. Thanks to this method, our simulator can robustly
handle complex collision contacts in these two examples at 4 to 17 FPS and 10 to 21 FPS respectively.

Step-and-project is a popularmethod to simulate non-penetrating deformable
bodies in physically-based animation. The strategy is to first integrate the
system in time without considering contacts and then resolve potential
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intersections, striking a good balance between plausibility and efficiency.
However, existing methods can be defective and unsafe when using large
time steps, taking risks of failure or demanding repetitive collision testing
and resolving that severely degrade performance. In this paper, we propose
a novel two-way method for fast and reliable continuous collision handling.
Our method launches an optimization from both ends of the intermediate
time-integrated state and the previous intersection-free state. It progres-
sively generates a piecewise linear path and eventually obtains a feasible
solution for the next time step. The algorithm efficiently alternates between a
forward step and a backward step until the result is conditionally converged.
Thanks to a set of unified volume-based contact constraints, our method
offers flexible and reliable handling of various codimensional deformable bod-
ies, including volumetric bodies, cloth, hair and sand. Experimental results
demonstrate the safety, robustness, physical fidelity and numerical efficiency
of our method, making it particularly suitable for scenarios involving large
deformations or large time steps.

CCS Concepts: • Computing methodologies→ Physical simulation.

Additional Key Words and Phrases: collision handling, deformable body
simulation, GPU computation, nonlinear optimization
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1 INTRODUCTION
The simulation of intersection-free deformable body dynamics can
be formulated as a constrained optimization problem [Kane et al.
1999; Martin et al. 2011]:

x𝑡+1 = argmin
x

𝐸
(
x, x𝑡 , v𝑡

)
, s.t. X

(
x𝑡 , x

)
⊂ Ω, (1)

in which x𝑡 , v𝑡 ∈ R3𝑁 are the stacked position and velocity vec-
tors of 𝑁 vertices at time 𝑡 , 𝐸 (x, x𝑡 , v𝑡 ) is the dynamics objective,
X(x𝑡 , x) is a sufficiently short linear or piecewise linear path from
x𝑡 to x, and Ω is the feasible, intersection-free region. Li et al. [2020a;
2021] showed that globally convergent solutions could be obtained
by augmenting the objective function with a smoothed Log-barrier-
based contact energy term converting the original constrained prob-
lem into an unconstrained one and then solving it by Newton’s
method with a pre-filtered line search strategy based on continuous
collision detection [Smith and Schaefer 2015].
However, their techniques are time-consuming, due to the fre-

quent launching of the costly dynamics solver and truncated small
step sizes for keeping the path within Ω. A common strategy [Har-
mon et al. 2008; Li et al. 2020b; Narain et al. 2012; Tang et al. 2018a,
2016, 2018b] towards more efficient simulation is to divide the opti-
mization into two steps:

y[𝑘+1] = argmin
y

𝑄𝑘

(
y, x[𝑘 ] , x𝑡 , v𝑡

)
,

x[𝑘+1] = argmin
x

𝐷
(
x, y[𝑘+1]

)
, s.t. X

(
x[𝑘 ] , x

)
⊂ Ω.

(2)

In each iteration, the dynamics solver first forms a quadratic model
𝑄𝑘 (or a linear model 𝐿𝑘 [Wang and Yang 2016; Wu et al. 2020]) of
𝐸 (x, x𝑡 , v𝑡 ) at x[𝑘 ] ∈ Ω to compute a target state y[𝑘+1] , and then a
collision handling module addresses all potential intersections to ob-
tain a feasible state x[𝑘+1] . Here, 𝐷 (x, y[𝑘+1] ) is a metric measuring
the distance between x and y[𝑘+1] , which is supposed to be signifi-
cantly simpler than 𝐸 (x, x𝑡 , v𝑡 ). After several iterations of solving
Eq. (2), the algorithm reports x[𝑘+1] as the solution x𝑡+1 for Eq. (1).
This strategy avoids frequent launching of high-cost solvers, e.g.,[Li
et al. 2020a, 2021], but it sacrifices part of accuracy in exchange for
performance since this alternating approach might not converge to
a local minimum. Li et al. [2021] showed that such inaccuracy can
manifest as undesirable wrinkling or jittering artifacts, which can
be mitigated through parameter tuning.
Intuitively, the collision handling module should project y[𝑘+1]

back to Ω, but it also has to avoid tunneling artifacts as shown in
Fig. 3(a). In the past, researchers [Harmon et al. 2008; Li et al. 2020b;
Narain et al. 2012; Tang et al. 2018a, 2016, 2018b] parameterized this
path as a line segment and evaluatedX(x[𝑘 ] , x) ⊂ Ω by continuous
collision detection (CCD) tests. This approach typically produces
plausible results when y[𝑘+1] is close to x[𝑘 ] . However, as two states
deviate from each other, finding x[𝑘+1] on the line segment that
passes all of the CCD tests can become extremely difficult [Tang
et al. 2018b]. Additionally, the metric to measure the distance for

projection also plays a crucial role for achieving realistic simulation.
Using mass-weighted 𝐿2 norm is a straightforward approach that
minimizes the change in post-response kinetic energy [Harmon et al.
2008; Li et al. 2020b; Narain et al. 2012; Tang et al. 2018a, 2016, 2018b].
However, this approach can introduce significant distortions in local
elements when resolving all contacts (see Figs. 18 and 19), resulting
in undesired artifacts such as over-stretching or oscillations over
time.

x[k]

y[k+1]

x[k+1] Ω

x(l)

y(l)

Two-way collision
handling

In this paper, we develop a col-
lision handling algorithm for the
step-and-project method, capable
of finding a high-quality solution
x[𝑘+1] at a low cost. Our key idea
is a two-way approach as illus-
trated in the inset. In this ap-
proach, we iteratively solve two
steps: a backward step finding a sequence of targets {y(𝑙) } through
impact zone optimization, serving as guidance for the evolution of
x, and a forward step that generates the actual path X(x[𝑘 ] , x) ⊂
Ω by conservatively advancing vertices towards the guidance.
As the forward step finds a sequence of states {x(𝑙) } satisfying
(1 − 𝑡)x(𝑙) + 𝑡x(𝑙+1) ∈ Ω for any 𝑡 ∈ [0, 1] and 𝑙 , we actually con-
struct X(x[𝑘 ] , x) as a piecewise linear path rather than a linear
one [Harmon et al. 2008; Li et al. 2020b; Narain et al. 2012; Tang
et al. 2018a, 2016, 2018b] relaxing the restriction on the search space.
Aiming at both efficiency and quality for resolving contacts, we
make the following technical contributions:

• An inexact backward step. We formulate the impact zone
optimization as a linear complementary problem and solve it
inexactly with a small number of iterations in each backward
step. In addition, we introduce soft unilateral constraints on
edge length to effectively mitigate oscillations resulting from
large local element deformations.
• A lightweight forward step. Instead of relying on CCD tests,
we use fast discrete distance evaluation to calculate safe asyn-
chronous step sizes. This approach ensures that the path
generated in each forward step remains safely within Ω.

We demonstrate that our two-way collision handling algorithm
can be conveniently implemented on a GPU and integrated into
our in-house GPU-based deformable body simulator. Coupled with
volume-based contact constraints, our simulator is capable of sim-
ulating a variety of codimensional examples as depicted in Figs. 1
and 2, including volumetric bodies, cloth, hair and sand. The ex-
periments validate that our system is safe, fast, GPU-friendly, and
robust against large time steps and large deformations.

2 RELATED WORK

Discrete collision handling. Researchers [Baraff et al. 2003; Volino
andMagnenat-Thalmann 2006;Wicke et al. 2006] developed discrete
collision handling methods to remove intersections at the end of
every time step. If a discrete collision handling method fails to
eliminate all of the intersections, the process can be repeated in the
next time step, hopefully reaching an intersection-free state later.
Therefore, a discrete collision handling method is robust regardless
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of the time step. But as the time step increases, it becomes less
likely to remove all of the intersections, which leads to long-lasting
penetration artifacts in simulation.
Many physics-based simulators apply repulsion forces among

proximity pairs to lessen the likelihood of collisions. Broadly speak-
ing, this repulsion approach is a discrete collision handling method,
as it calculates repulsive forces based on proximity distances dis-
cretely evaluated in time. Thanks to its simplicity, the repulsion ap-
proach is widely used in GPU-based simulation [Fratarcangeli et al.
2016; Stam 2009; Wang and Yang 2016], but it has no intersection-
free guarantee if it is used alone, without support from any other
method. To help the repulsion approach achieve intersection-free
guarantee, Wu et al. [2020] presented a fail-safe Log-barrier repul-
sion phase, although its usage should be minimized due to a large
computational overhead.

Continuous collision handling. The main difference between dis-
crete collision handling and continuous collision handling is about
the timing: discrete collision handling tries to eliminate intersections
at the end of the time step, while continuous collision handling must
resolve all of the intersections at any time. A typical continuous
collision handling method contains two components: continuous
collision detection (CCD) and applying collision responses. Contin-
uous detection of a vertex-triangle or edge-edge collision involves
solving a cubic equation, which could be prone to errors [Ainsley
et al. 2012; Provot 1997; Tang et al. 2014; Wang 2014], especially
in the single-precision floating-point computation environment.
Recently, Yuksel [2022] presented an efficient and robust method
for finding real roots of cubic and higher-order polynomials, and
Lan et al. [2022] provided a re-designment of the CCD root finding
procedure on GPU. For the robustness of CCD queries, we recom-
mend [Wang et al. 2021] for a more detailed discussion. In addition
to the possible robustness issue, the typical spatial acceleration struc-
tures used for CCD, such as bounding volume hierarchies (BVHs)
and bounding volume traversal trees (BVTTs), could be hard to
parallelize [Tang et al. 2011a, 2016].

But compared with CCD, obtaining the right collision responses
is an even greater challenge. Bridson et al. [2002; 2005] initially used
geometric impulses as responses and the rigid impact zone tech-
nique as a failsafe. To avoid the locking artifacts caused by the rigid
impact zone technique, Harmon et al. [2008] calculated collision
responses by non-rigid impact zone optimization. ARCSim [Narain
et al. 2012] used this method as its inner collision handling compo-
nent, implemented with a combination of BVH-based CCD and an
augmented Lagrangian solver for collision response. CAMA [Tang
et al. 2016], PSCC [Tang et al. 2018a], I-Cloth [Tang et al. 2018b],
and P-Cloth [Li et al. 2020b] further improved its performance on
GPU(s) from two aspects.

• Faster CCD on GPU(s). In detail, this benefits from localized
BVTT front propagation exploiting spatio-temporal coher-
ence [Tang et al. 2016], parallel normal cone culling with
spatial hashing [Tang et al. 2018a], incremental collision de-
tection with spatial hashing exploiting spatio-temporal co-
herence [Tang et al. 2018b], and distributing the incremental
collision detection on multiple GPUs [Li et al. 2020b].

• More GPU-friendly non-rigid impact zone solver. In detail,
this benefits from assembling all of the impacts into one
linear system to perform inelastic projection [Tang et al. 2016],
parallelizing the augmented Lagrangian method of ARCSim
in a gradient-descent manner [Tang et al. 2018b], and further
parallelizing the augmented Lagrangian method on multiple
GPUs [Li et al. 2020b].

We note that although the performance is continuously improved
in these step-and-project methods, both the assumption of lin-
ear paths and simply measuring the projection distance via mass-
weighted 𝐿2 norm are fully inherited, as well as the specific choice
of the augmented Lagrangian method for collision response in [Li
et al. 2020b; Narain et al. 2012; Tang et al. 2018b].
Recently, Log-barrier-based methods [Li et al. 2020a, 2021; Wu

et al. 2020] have emerged to be popular choices for collision handling
in physical animation. They usually employ a smoothed [Li et al.
2020a, 2021] or unsmoothed [Wu et al. 2020] Log-barrier potential
term to augment the objective, so that this term could be extremely
large to “push” the state against the boundary of the feasible region.
However, it is not sufficient for guaranteeing the state stays in the
feasible region. Usually, CCD is employed to compute an upper
bound of the safe distance to make sure that no intersection occurs.
Clearly, the strength of these methods is their safety, but they could
be notoriously slow for two reasons.
• Frequent tests. These methods have to repetitively test ver-
tices in every optimization step to make sure that no inter-
section occurs.
• Barrier functions. Barrier functions “push” x sufficiently against
the feasible region boundary 𝜕Ω, only when x gets close to
𝜕Ω.

Moreover, we note that many continuous collision handling meth-
ods may require considerable implementation efforts to get accel-
erated on GPUs [Lauterbach et al. 2010; Li et al. 2020b; Tang et al.
2018a, 2016], due to their high dependency on sequential tasks [Li
et al. 2021] and high complexity [Tang et al. 2018b].

Asynchronous steppings. The conservative advancement ap-
proach [Mirtich and Canny 1995; Von Herzen et al. 1990] for rigid
body collision handling suffers from the small stepping issue, as it
requires all of the bodies to take the same step size. Mirtich [2000]
addressed this issue by allowing rigid bodies to take different step
sizes, while still respecting causality. Researchers [Harmon et al.
2009; Thomaszewski et al. 2008] later investigated this idea for asyn-
chronous collision handling of cloth, and explored several speedup
strategies [Ainsley et al. 2012; Harmon et al. 2011]. Our method
is also asynchronous: vertices away from collisions can take large
step sizes to reach their targets fast. More importantly, it avoids
CCD tests, so it is naturally free of performance or robustness issues
associated with them.

Broad-phase collision culling. Broad-phase collision culling is
important to collision handling methods, as it avoids unnecessary
collision tests for collision-free primitive pairs. In general, colli-
sion culling techniques fall into two categories: those based on
BVHs [Lauterbach et al. 2010; Tang et al. 2010, 2011b; Wang et al.
2017] and those based on spatial hashing [Barbič and James 2010;
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ALGORITHM 1: A two-way method

Input: the current state x[𝑘 ] , the target state y[𝑘+1] ,
the proximity search bound

[
𝐷min, 𝐷max] , the step

number limit 𝐿 and the termination condition 𝜖 .
1 x(0) ← x[𝑘 ] ;
2 y(0) ← y[𝑘+1] ;
3 𝐷 (0) ← 0;
4 r(0) ← 1;
5 P← ∅;
6 for 𝑙 = 0...𝐿 do
7 if 𝐷 (𝑙) < 𝐷min then
8 P← Proximity_Search

(
x(𝑙) , 𝐷max) ;

9 𝐷 (𝑙) ← 𝐷max;
10 end
11 y(𝑙+1) ← Backward

(
y(𝑙) , x(𝑙) , y[𝑘+1] ,P

)
// Sec. 4;

12
{
x(𝑙+1) , r(𝑙+1)

}
← Forward

(
x(𝑙) , r(𝑙) , y(𝑙+1) − x(𝑙) ,P

)
// Sec. 5;

13 𝐷 (𝑙+1) ← 𝐷 (𝑙) − 2max
𝑖

x(𝑙+1)
𝑖

− x(𝑙)
𝑖

;
14 if

r(𝑙+1)∞ < 𝜖 then
15 break;
16 end
17 end
18 x[𝑘+1] ← x(𝑙+1) ;

Pabst et al. 2010; Tang et al. 2018a; Teschner et al. 2003; Zheng and
James 2012]. While GPU implementations of both categories have
been investigated before, GPU-based spatial hashing is arguably
more popular, thanks to its simplicity and parallelizability. Our con-
tributions are orthogonal to collision culling techniques and we can
adopt more advanced ones later.

Frictional contacts. How to simulate frictional contacts, especially
frictional self contacts, is another challenging problem in deformable
body simulation. The popular velocity filtering approach [Bridson
et al. 2002;Müller 2008] is simple, fast, but not so physically plausible,
as it handles collisions and frictions in separate processes. Recently,
researchers [Bertails-Descoubes et al. 2011; Daviet 2020; Li et al.
2020a; Ly et al. 2020; Macklin et al. 2019; Verschoor and Jalba 2019]
are interested in handling collisions and frictions together through
joint optimization. While our work does not consider friction, we
plan to leverage their ideas for simulating plausible frictional con-
tacts in the future.

3 A TWO-WAY FRAMEWORK
As we discussed in Section 1, restricting to a linear path and simply
taking mass-weighted 𝐿2 norm as the distance function can be
inappropriate for post-projection, especially when ∥y[𝑘+1] − x[𝑘 ] ∥
is large. Thus, we formulate the collision handling as the following
optimization problem:

x[𝑘+1] = argmin
x

1
2
x − y[𝑘+1]2M, (3a)

s.t.
{

X
(
x( [𝑘 ]) , x

)
⊂ Ω,

c(x, y[𝑘+1] ) ≥ 0,
(3b)

in which M ∈ R3𝑁×3𝑁 is the scaled lumped mass matrix [Tang
et al. 2018b]. The major differences between our formulation and
the ones in [Harmon et al. 2008; Li et al. 2020b; Narain et al. 2012;
Tang et al. 2018a, 2016, 2018b] are twofold rooted in Eq. (3b): (i) the
pathX(x( [𝑘 ]) , x) here should be piecewise linear and sufficiently
short, while [Harmon et al. 2008; Li et al. 2020b; Narain et al. 2012;
Tang et al. 2018a, 2016, 2018b] restricts it as a linear segment; and
(ii) additional edge length constraints c(x, y[𝑘+1] ) are introduced
(see Section 4.2 for details) to avoid spuriously large deformations of
local elements, which compensates for possible loss of shape preser-
vation by only considering the mass-weighted Euclidean distance. In
fact, the projection distance jointly defined by the mass-weighted 𝐿2
norm plus edge length constraints is more consistently measured as
the actual energy, in a sense that we are approximately minimizing
the change of both kinetic energy and potential before and after
projection. Numerically, such treatment does not complicate the ob-
jective function, allowing us to use existing fast iterative techniques
as described below.
Our two-way method aims to find a good approximate solution

subject to Eq. (3) at a low cost. In this method, two sets of inter-
mediate variables {y(𝑙) } and {x(𝑙) } are introduced and updated
alternately in two steps: a backward step starting at y(0) = y[𝑘+1] ,
aiming to inexactly and progressively project y(𝑙) back to Ω as a
target, and a forward step starting at x(0) = x[𝑘 ] , aiming to move
from the current state x(𝑙) ∈ Ω towards y(𝑙+1) with a guarantee
ofX(x[𝑘 ] , x) being inside Ω by conservative vertex advancement.
Intuitively, {y(𝑙) } guide the evolution of {x(𝑙) } in the forward step,
and in turn {x(𝑙) } explore and update the boundary of the feasi-
ble region Ω, which gives feedback to the updates of {y(𝑙) }. The
supplemental video illustrates our two-way optimization process.

Alg. 1 outlines the pseudo-code of our method: it keeps running
the two steps alternately, until the termination metric r(𝑙+1) is small
enough (Line 14) or it reaches the maximum number of iterations 𝐿
(Line 6). We have r(𝑙+1) to make sure that the accumulated moving
distance from x[𝑘 ] to x(𝑙+1) should be close enough to the distance
from x[𝑘 ] to y[𝑘+1] . Either way, the method can safely report x(𝑙+1)

as its result x[𝑘+1] , no matter if y(𝑙+1) stays in Ω or not.

3.1 The Proximity Search
Before diving into details of our method, we first discuss about
the proximity search. Functioning as broad-phase collision culling,
the proximity search serves multi-fold purposes: to form the set
of contact constraints in the backward step (in Subsection 4.1), to
obtain proximity pair distances for safe steppings (in Section 5), and
to calculate repulsive forces as a part of dynamics (in Subsection 6.2).
In our implementation, the proximity search is based on the standard
grid-based spatial hashing technique [Pabst et al. 2010; Tang et al.
2018a].

Since the proximity search has non-negligible cost, one challenge
is how to reuse the results as often as possible, rather than redoing
the search in every step. Let P be the proximity set in each step
that is required to be a superset of all possible pairs whose distances
are below a certain bound 𝐷min:

P ⊃ P𝐷min = {p | ∀p : distp
(
x(𝑙)

)
< 𝐷min}. (4)
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Assuming that in the 𝑙-th step,P is computed with a certain bound
𝐷max (P = P𝐷max ,𝐷 (𝑙) = 𝐷max > 𝐷min) so that all proximity pairs
satisfying Eq. (4) are collected. To reuse this computed P in the
(𝑙+1)-th step, we point out thatP still contains all of the pairs whose
distances are below𝐷 (𝑙+1) = 𝐷 (𝑙)−2max

𝑖
∥x(𝑙+1)

𝑖
−x(𝑙)

𝑖
∥. If𝐷 (𝑙+1) ≥

𝐷min, we can reuse P and only need to filter out some elements
in P with recomputed distances. Otherwise, P is insufficient to
fulfill Eq. (4). Thus, we have to reset 𝐷 (𝑙+1) = 𝐷max and perform
the proximity search to avoid missing any necessary proximity pair.
The entire computational cost depends on values of both 𝐷min

and 𝐷max. On one hand, the cost decreases as 𝐷min decreases, but
𝐷min cannot tend to zero. To build a full set of contact constraints in
the backward step, P𝐷min needs to collect all pairs whose distances
are below a given activation threshold 𝛿 , which should not be too
small in the discrete computing environment as suggested in [Li
et al. 2020a]. Here we set 𝛿 = 1mm by default and 𝐷min ≥ 𝛿 . On
the other hand, the cost decreases as 𝐷max increases, but doing so
requires more memory cost and distance evaluations as a result
of an increasing number of proximity pairs. In our experiments,
we find that setting 𝐷min = 2𝛿 = 2mm and 𝐷max = 4mm usually
triggers one proximity search every three steps in average, which
empirically keeps a reasonable balance between memory cost and
computing time.

4 THE BACKWARD STEP
The backward step in our two-way approach is similar to the im-
pact zone optimizations in [Harmon et al. 2008; Li et al. 2020b;
Narain et al. 2012; Tang et al. 2018a, 2016, 2018b]. Instead of directly
performing CCD to find a strictly intersection-free projection, we
roughly optimize an intermediate target y(𝑙) almost intersection-
free. Note that it is only used for guiding the vertex advancement
in the forward step later, where the exact intersection-freeness is
imposed as discussed in Section 5.
In the 𝑙-th iteration, the goal of the backward step is to project

y(𝑙) back to Ω formulated as a constrained optimization:

y(𝑙+1) = argmin
y

1
2
y − y[𝑘+1]2M, s.t. c(y) ≥ 0, (5)

where c(y) ≥ 0 contains the contact constraints and edge length
constraints. Let x(𝑙) be the current state of the forward step in the
𝑙-th iteration. We linearize the contact constraints at x(𝑙) : c(x(𝑙) ) +
J(𝑙) (y−x(𝑙) ) ≥ 0, in which J(𝑙) = 𝜕c(x(𝑙) )/𝜕x is the Jacobian matrix.

Linearization. Note that we perform assembly and linearization
of contact constraints at x(𝑙) rather than y(𝑙) . The reason is that
we not only require y(𝑙+1) to be close to intersection-free, but also
expect the path from x(𝑙) to y(𝑙+1) to stay inside Ω as much as
possible. Since x(𝑙) is inside Ω in the first place, we are actually
attempting to drive y(𝑙+1) to cross the boundary of Ω and stay on
the same side as x(𝑙) rather than y(𝑙) . Simply projecting the target
back to Ω based on the constraints assembled around y(𝑙) can cause
the stagnation issue as shown in Fig. 3(b), while performing the
linearization at x(𝑙) effectively avoids such an issue and reaches the
convergence with a more reasonable solution as shown in Fig. 3(c).

By introducing Lagrangian multipliers, we formulate the follow-
ing Lagrangian:

L(y,𝝀) = 1
2
y − y[𝑘+1]2M − (

c
(
x(𝑙)

)
+ J(𝑙)

(
y − x(𝑙)

) )T
𝝀, (6)

whose minimizer satisfies the KKT conditions:{
∇yL = M(y − y[𝑘+1] ) −

(
J(𝑙)

)T𝝀 = 0,
𝝀 ≥ 0 ⊥ c

(
x(𝑙)

)
+ J(𝑙)

(
y − x(𝑙)

)
≥ 0.

(7)

Multiplying the first condition in Eq. (7) with J(𝑙) , we obtain:

J(𝑙)y = J(𝑙)M−1
(
J(𝑙)

)T𝝀 + J(𝑙)y[𝑘+1] . (8)

Together with the second condition, we get a linear complementarity
problem (LCP) with only one unknown 𝝀:

𝝀 ≥ 0 ⊥ c
(
x(𝑙)

)
+ J(𝑙)M−1

(
J(𝑙)

)T𝝀 + J(𝑙) (y[𝑘+1] − x(𝑙) ) ≥ 0. (9)

Once we solve𝝀, we apply the first condition of Eq. (7) to calculate
y(𝑙+1) for the next iteration. Note that y(𝑙) is the initialization to the
problem in Eq. (5) and it is calculated from the last 𝝀 in the (𝑙-1)-th
step, so the cumulative effect of the previous 𝑙-1 iterations to y is
retained.

4.1 Contact Constraints
An interesting question is how to define the contact constraints
c(x) ≥ 0 for a variety of primitive proximity pairs. In ourmethod, we
construct our contact constraints in a volume enforcement fashion.
To begin with, we consider a vertex-triangle proximity pair in

Fig. 4(a), whose distance is below a certain activation threshold
𝛿 . In our experiment, 𝛿=1mm by default. Let {r𝑎, r𝑖 , r𝑗 , r𝑘 } be its
projection, calculated by moving the vertex and the triangle in
opposite normal directions until the distance becomes 𝛿 :{

r𝑎 = x𝑎 + 1
2
(
𝛿 − ∥x𝑎 − 𝑏𝑖x𝑖 − 𝑏 𝑗x𝑗 − 𝑏𝑘x𝑘 ∥

)
n,

r𝑖, 𝑗,𝑘 = x𝑖, 𝑗,𝑘 − 1
2
(
𝛿 − ∥x𝑎 − 𝑏𝑖x𝑖 − 𝑏 𝑗x𝑗 − 𝑏𝑘x𝑘 ∥

)
n,

(10)

where 𝑏𝑖 , 𝑏 𝑗 and 𝑏𝑘 are the barycentric weights of vertex 𝑎 on the
triangle, and n is the constant triangle normal. Under the assumption
that the triangle area is constant, we define the contact constraint
by requiring the volume of x𝑎x𝑖x𝑗x𝑘 to be greater than or equal to
the volume of r𝑎r𝑖r𝑗 r𝑘 :

𝑐 (x𝑎, x𝑖 , x𝑗 , x𝑘 ) = det(𝜕x/𝜕r) − 1 ≥ 0, (11)

in which r𝑎 , r𝑖 , r𝑗 and r𝑘 are treated as constants, and 𝜕x/𝜕r is the
artificial deformation gradient tensor, assuming that the computed
r is the reference shape. Note that the contact constraint actually
outlines the boundary of the feasible region at x(𝑙) , so the sign of
volume at x(𝑙) is positive. If y(𝑙) is on the other side of the boundary,
the sign of volume at y(𝑙) would be negative and the inequality
constraint would “pull” y(𝑙) to the same side as x(𝑙) .
Based on the same idea, we model the contact constraints for

other simplex pairs, including edge-edge pairs, and vertex-vertex
pairs. In the simplest case, the contact constraint for a vertex-vertex
pair is:

𝑐 (x𝑎, x𝑖 ) = ∥x𝑖 − x𝑎 ∥ /𝛿 − 1 ≥ 0. (12)
These constraints enable our method to handle contacts for a variety
of codimensional deformable body examples, such as cloth, hair (in
Fig. 2(c) and 2(d)) and sand (in Fig. 2(e) and 2(f)).
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(a) Falling mats (b) Stacked mats (c) Twisted hair (d) Loose hair (e) Falling sand (f) Piled sand

Fig. 2. Codimensional deformable bodies. Based on the volume enforcement idea, we develop contact constraints for a wide range of primitive proximity
pairs. These contact constraints enable our method to simulate a variety of codimensional examples, including elastic mats in (a) and (b), cloth, hair in (c) and
(d), and sand in (e) and (f).

(a) x[𝑘 ] (above) and y[𝑘+1]
(below)

(b) x[𝑘+1] using the con-
tact constraints assembled
around y(𝑙 )

(c) x[𝑘+1] using the con-
tact constraints assembled
around x(𝑙 )

Fig. 3. Linearization choices. The tunneling artifact occurs between two
intersection-free states x[𝑘 ] and y[𝑘+1] (Fig. (a)). Projecting y[𝑘+1] back to
Ω based on the constraints assembled around y(𝑙 ) stagnates x[𝑘+1] (Fig. (b)).
Instead, if we assemble and linearize contact constraints around x(𝑙 ) , y(𝑙 )

manages to cross the boundary of Ω and stay on the same side as x(𝑙 ) ,
eventually advancing x(𝑙 ) to a more reasonable solution (Fig. (c)).

(a) (b) (c)

Fig. 4. Vertex-triangle pair. Our constraint enforces the volume of
x𝑎x𝑖x𝑗x𝑘 to be the same as its reference r𝑎r𝑖r𝑗 r𝑘 (Fig. (a)), in which the
vertex and the triangle are separated by a threshold distance 𝛿 (Fig. (b)).
Tessellated with small tetrahedra in crevices, the simulated cloth robustly
prevents self-intersections (Fig. (c)).

We find that such volume-based constraints could make locking
artifacts, which usually come from the edge-edge pairs, almost invis-
ible. The possible reason is that if we renew the reference volume in
every intermediate step as our method does, it does not cause the re-
sistance of shearing or twisting, whereas if the reference shapes are
constant, these artifacts would be observed as discussed in [Müller
et al. 2015]. A potential problem with volumetric constraints is that
they may increase the triangle area or edge length, which may in-
fluence the simulation quality or performance negatively. However,
this issue is barely problematic in our experiments: we test the pop-
ular gap constraints [Andrews et al. 2022] as a replacement, and
using both kinds of constraints has comparable performance as
Fig. 5 shows, and our examples show that volumetric constraints
can work well without obvious artifacts.

0

5

10

15

20 lcp_1_icloth_constrai
nt
lcp_1

0

N
um

be
r o

f S
te

ps

5

10

20

0 200 400 600 800
Frame Index

15

Gap constraint

Our volume-based constraint

(a) The number of steps fluctuating over frames

0

30

60

90

120 lcp_1_icloth_constra
int
lcp_1

0

Co
st 

(m
s)

30

60

120

0 200 400 600 800
Frame Index

90

Gap constraint

Our volume-based constraint

(b) The collision cost fluctuating over frames

Fig. 5. Comparison with the gap constraints.We compare the perfor-
mance of our method implemented with the gap constraints and the volume-
based constraints (as ours). Our volume-based constraints exhibit compara-
ble performance to the gap constraints and do not have a negative impact
on overall performance. By default, we use the bow knot example for per-
formance evaluations in this paper.

Sifakis et al. [2008] explored a similar idea, but they chose to
preserve the volume, rather than enforce the volume to a desired
value. In comparison, our constraints can keep pairs well separated,
so that fewer collisions can occur in later updates.

4.2 Edge length Constraints

When the target y[𝑘+1] is close to x[𝑘 ] , minimizing the mass-
weighted Euclidean distance keeps a minimal change of kinetic
energy after collision handling and the change of potential should
not be significant either. However, as y[𝑘+1] starts to get far away
from x[𝑘 ] , simply using this kinetic energy norm to measure the
projection distance could be inappropriate. It can cause spuriously
large, local deformations (see Figs. 18 and 19) and even oscillations
over time, as a result of a sharp change of potential before and
after collision handling. We can incorporate additional deformation
resistance terms into the objective function, but it breaks a simple
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Fig. 6. Performance w.r.t. Gauss-Seidel iterations. We compare the per-
formance of our method using different numbers of Gauss-Seidel iterations
per backward step. Applying more Gauss-Seidel iterations solves the LCP
problem more accurately in every backward step, but it does not necessarily
reduce the number of steps (Fig. (a)). Thus, we recommend using only one
Gauss-Seidel iteration per step for the efficiency purpose (Fig. (b)).

LCP formulation and thus becomes more numerically involved.
Given the fact that potentials are basically penalizing non-rigid
deformations, we therefore attempt to preserve the shape of each
element by preserving its edge lengths, so that each element mostly
undergoes a rigid transformation and the change of potential stays
at a low level after collision handling.

For keeping it as a simple LCP formulation where many fast itera-
tive techniques can be used, we follow the strategy in [Macklin and
Muller 2021] to suppress spurious distortions by incorporating con-
straints without complicating the objective function, and linearize
it at y(𝑙) :

𝑐 (x𝑖 , x𝑗 ) = 𝜎 −
x𝑖 − x𝑗 /y[𝑘+1]𝑖

− y[𝑘+1]
𝑗

 ≥ 0, (13)

in which 𝑖 and 𝑗 are the two vertex indices of one edge and 𝜎

is the maximum violation ratio. Here we relax the strict bilateral
constraint to the soft unilateral one and permit a certain level of
violation for performance consideration. In our implementation, we
use the squared versions of Eqs. (12) and (13) to avoid numerical
errors and inefficiencies that can be introduced by taking squared
roots as discussed in [Li et al. 2020a].

4.3 An Inexact GPU-Based Optimizer
A popular way of solving the LCP problem in Eq. (9) is to apply a
projected iterative method [Erleben 2013], which enforces 𝝀 ≥ 0
after every iteration of solving the linear system. In our simulator,
we adopt standard multi-color Gauss-Seidel as our solver. We use
the randomized graph coloring method in [Fratarcangeli et al. 2016]
while we assign color (graph node) to constraints instead of vertices.
This is different from the strategy in [Fratarcangeli et al. 2016].
Please refer to [Fratarcangeli et al. 2016] for more details.
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Fig. 7. Comparison with projected Jacobi method. We compare the
performance of our method implemented with the projected Jacobi method
and the projected Gauss-Seidel method (as ours). Compared to ours, the use
of the projected Jacobi method requires more steps (Fig. (a)) to conditionally
converge under metric r, resulting in higher computational costs (Fig. (b)).
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Fig. 8. Comparison with augmented Lagrangian method.We compare
the performance of our own optimizer and the augmented Lagrangian
optimizer in [Tang et al. 2018b]. Since their optimizer converges significantly
slower than ours, it has to run multiple iterations per backward step to
reduce the total number of steps. However, the improved convergence does
not pay off the extra cost, which makes their method less efficient.

4.3.1 Inexactness. One interesting question is how many iter-
ations should we spend on solving the LCP problem? The more
iterations we use, the more accurately the problem is solved. But
given the fact that the LCP problem is being constantly updated in
each single backward step, it would be a waste if too much computa-
tional cost is spent on a single problem. Ultimately, our choice should
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be based on the total collision cost, fundamentally determined by
two factors: the total number of steps for reaching convergence and
the costs associated with backward and forward steps. According to
Fig. 6, increasing the number of Gauss-Seidel iterations negatively
affects the overall performance. Therefore, we choose to use a single
iteration per backward step by default.

4.3.2 A projected Jacobi implementation. The analysis in Subsec-
tion 4.3.1 motivates us to consider an even more inexact implemen-
tation, i.e., replacing one projected Gauss-Seidel iteration by one
projected Jacobi iteration. After testing this implementation, we con-
clude that it is not a suitable choice for two reasons. First, projected
Jacobi needs an under-relaxation factor to ensure its convergence,
which further lowers the convergence rate. Second, the nonsmooth
nature of our method makes Chebyshev acceleration [Wang 2015]
ineffective across steps. Overall, the method with projected Jacobi
needs more steps and more costs for resolving collisions as Fig. 7
shows.

4.4 Comparison to an Augmented Lagrangian Optimizer
We can adopt other constrained optimization techniques to per-

form the task in our backward step as well. Specifically, we would
like to evaluate the performance of an augmented Lagrangian op-
timizer with the gradient descent method, advocated by Tang et
al. [2018b]. The strength of their optimizer is its simplicity: it does
not have to solve any linear systems for primal or dual variables,
and the major computational units are gradient and constraint eval-
uations. However, since their optimizer converges considerably
slower, it has to run multiple iterations per backward step to re-
duce the total number of steps. In our experiment, we implement
their optimizer with two options: one running 20 iterations per
step and one running 100 iterations per step. We find that when
using fewer iterations, their optimizer degenerates very quickly
in terms of changing r. To avoid iterations with no revenue, we
immediately terminate the optimization once we find the change
of ∥r∥∞ is tiny (∥r(𝑙) ∥∞−∥r(𝑙+1) ∥∞ < 10−7) after one step. Fig. 8
shows that when using 20 iterations per step, the two-way method
with their optimizer needs a large number of steps and often ter-
minates early, especially when the knot is tightened. By increasing
the iterations per step to 100, the early termination issue can be
alleviated. However, the two-way method implemented with their
optimizer still requires a large number of steps compared to our
method, which consistently terminates within a short time under
the metric r. Overall our optimizer is a better choice.

5 THE FORWARD STEP
In each forward step, we move the vertices from the current state
x(𝑙) toward y(𝑙+1) asynchronously:

x(𝑙+1)
𝑖

= x(𝑙)
𝑖
+ 𝛼 (𝑙+1)

𝑖

(
y(𝑙+1)
𝑖

− x(𝑙)
𝑖

)
. (14)

The key question is how to find the safe step size 𝛼 (𝑙+1)
𝑖

for every
vertex 𝑖 , so that X(x(𝑙) , x(𝑙+1) ) ⊂ Ω. One way of obtaining a safe
step size is to use continuous collision detection (CCD). CCD tests
calculate exact moments when proximity pairs intersect, which tell
how far x𝑖 should be moved. However, previous works show that
CCD tests could be prone to errors [Ainsley et al. 2012; Tang et al.

(a) x[𝑘 ] (above) and y[𝑘+1] (below) (b) stack view of x[𝑘+1] with various 𝜖

(c) x[𝑘+1] with 𝜖 =

0.75
(d) x[𝑘+1] with 𝜖 =

0.50
(e) x[𝑘+1] with 𝜖 =

0.25
(f) x[𝑘+1] with 𝜖 =

0.0001

Fig. 9. Termination condition and threshold 𝝐 . With the same x[𝑘 ] and
y[𝑘+1] , the accumulated moving distance from x[𝑘 ] to x[𝑘+1] is getting close
to the distance from x[𝑘 ] to y[𝑘+1] as 𝜖 approaching zero, reducing the risk
of early termination.

2014; Wang 2014] and require considerable efforts to get accelerated
on GPUs [Tang et al. 2011a, 2016, 2018b].
In our method, we propose to use an inexpensive yet reliable

scheme for calculating the safe step size. Our key idea is based
on the simple fact that a proximity pair cannot intersect, if none
of its vertices moves more than half of its distance. To use this
idea, the method needs a set of proximity pairs P, in which each
pair contains two non-adjacent simplices with its distance below
a global threshold 𝐷 (𝑙) . Given P, the method calculates 𝐷𝑖 , the
shortest distance of the proximity pairs involving vertex 𝑖:

𝐷𝑖 = min
{𝑎,𝑏 }∈P

dist
(
x(𝑙)𝑎 , x(𝑙)

𝑏

)
≤ 𝐷 (𝑙) , ∀𝑎, 𝑏 : 𝑎 ≠ 𝑏 and 𝑖 ∈ 𝑎 ∪ 𝑏,

(15)
in which 𝑎 and 𝑏 are the two simplices and dist

(
x(𝑙)𝑎 , x(𝑙)

𝑏

)
is their

distance. We treat 𝐷𝑖/2 as an upper bound on the displacement of
vertex 𝑖 to ensure the intersection-free condition:

∀𝑖 :
x(𝑙)

𝑖
− x(𝑙+1)

𝑖

 < 𝐷𝑖/2⇒ (1 − 𝑡)x(𝑙) + 𝑡x(𝑙+1) ∈ Ω, (16)

for any 𝑡 ∈ [0, 1]. Therefore we formulate our forward step by
updating the position of vertex 𝑖 as:

𝛼
(𝑙+1)
𝑖

= min
(
0.5𝛾𝐷𝑖

/y(𝑙+1)𝑖
− x(𝑙)

𝑖

, 1) ,
x(𝑙+1)
𝑖

= x(𝑙)
𝑖
+ 𝛼 (𝑙+1)

𝑖

(
y(𝑙+1)
𝑖

− x(𝑙)
𝑖

)
,

𝑟
(𝑙+1)
𝑖

= 𝑟
(𝑙)
𝑖

(
1 − 𝛼 (𝑙+1)

𝑖

)
,

(17)

in which 𝛾 is a damping factor preventing proximity pairs from get-
ting too close in a single forward step. Using the step size calculated
for every vertex, we ensure that x(𝑙+1) is an acceptable intermediate
state, regardless of the search direction.
A special feature we would like to mention in Eq. (17) is the

termination metric 𝑟𝑖 . The non-smooth nature of our optimization
method makes it difficult to define the termination condition by the
step size 𝛼 (𝑙+1)

𝑖
directly, without potential early termination risks.

To address this issue, we come up with a termination metric 𝑟𝑖 in
an accumulated fashion. Intuitively, it keeps track of the remaining
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step size needed for vertex 𝑖 to reach its target and we terminate the
method once ∥r(𝑙+1) ∥∞ drops below a certain threshold 𝜖 . As the
threshold 𝜖 tends to zero, the accumulated moving distance from
x[𝑘 ] to x[𝑘+1] tends to be close enough to the distance from x[𝑘 ] to
y[𝑘+1] , so the early termination risks of the optimization could be
eliminated as shown in Fig. 9(f).

Compared to CCD tests, evaluating distance using our scheme is
computationally inexpensive, reliable against floating-point errors
and easy to parallelize on GPUs.

5.1 Comparison to CCD-Based Schemes
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Fig. 10. Comparison with CCD. Overall,
the CCD-free stepping schemes for colli-
sion handling is five to seven times faster
than the CCD-based schemes within a sin-
gle time step.

To compare our CCD-
free stepping scheme with
CCD-based schemes, we
implement a CCD-based
scheme by the tests pro-
vided by I-Cloth [Tang
et al. 2018b], which is one
of the fastest CCD imple-
mentations on a GPU. We
also adjust both schemes
to use the same proxim-
ity search tool provided
by I-Cloth, so that we can
factor out the difference
in the implementation de-
tails. On the same NVIDIA GeForce GTX 2080 Ti GPU, we evaluate
both schemes with a number of examples using two time steps:
Δ𝑡=1/100s and Δ𝑡=1/20s.

In the examples with Δ𝑡=1/100s, the experiment shows our prox-
imity search cost is about 60 percent of the broad-phase CCD culling
cost, while the distance evaluation cost is about 15 percent of the
narrow-phase CCD test cost. Overall, our CCD-free scheme is five
times faster than the CCD-based scheme.

In the examples with Δ𝑡=1/20s, the narrow-phase CCD test cost
increases significantly while the distance evaluation cost increases
marginally. As a result, our CCD-free scheme is about seven times
faster than the CCD-based scheme.

We note that the computational costs of the two step size schemes
alone do not provide the full picture of their difference. In general,
our CCD-free scheme provides smaller step sizes and causes 10 to 20
percent more steps needed for convergence. This further increases
the cost of the backward step by 10 to 20 percent. But overall, it is
still beneficial to use the CCD-free scheme, given the large compu-
tational cost needed for CCD tests.

The Special CCD-Based Scheme in [Wu et al. 2020]. The step size
scheme adopted by the hard phase in [Wu et al. 2020] is also based
on CCD tests. Compared with other CCD-based schemes, their
approach restricts all of the edge lengths to be less than a constant
upper bound and accordingly derives a series of sufficient conditions
to prevent intersections, which can be achieved by handling vertex-
vertex contacts only. As a result, their CCD tests are less expensive,
making their method suitable for fast simulation of virtual garments
that are almost inextensible.

(a) The initial state (b) The twisted state

Fig. 11. Twisting tube. When a compliant cloth tube is severely squeezed,
it experiences intense and frequent collisions in the middle part as shown
in (b). Our method robustly handles these collisions in this example taking
Δ𝑡=1/100s as the time step.

However, such a benefit comes at the cost of limited applicability.
If we apply their scheme to simulate general shell deformations
where this length restriction cannot be adopted, e.g., the sustaining
inflation or contraction of the membrane in the normal flow example
(Fig. 16), then CCD tests have to consider all necessary vertex-
triangle and edge-edge contacts again. In such cases, their method
would be less efficient.

6 IMPLEMENTATION DETAILS
In this section, we discuss the implementation details of our two-way
approach embedded in a GPU-based deformable body simulator.

6.1 Dynamics Solvers
Since our method works as a standalone module for collision han-
dling, it is naturally compatible withmost of the dynamics solvers. In
our simulator, we follow the pipeline in Eq. (2) to solve the nonlinear
optimization problem stemming from deformable body dynamics.
In detail, 𝑄𝑘 is a quadratic proxy of energies written as below:

𝑄𝑘 = 𝐸
(
x[𝑘 ] , x𝑡 , v𝑡

)
+b[𝑘 ]⊺ (y−x[𝑘 ] )+1

2
(y−x[𝑘 ] )⊺G[𝑘 ] (y−x[𝑘 ] ),

(18)
in which b[𝑘 ] is the gradient and G[𝑘 ] is the modified Hessian of
𝐸 (x, x𝑡 , v𝑡 )

��
x=x[𝑘 ] after positive semi-definite (PSD) projection. We

apply the conjugate gradient method with a block Jacobi precon-
ditioner to solve the linear system emerging from the quadratic
model in every Newton iteration, and run our two-way method for
collision handling right after one single Newton iteration. Currently,
our simulator uses CUDA 11.2 and the CUB library for reduction
and sorting operations.

In our implementation, we fix the number of Newton iterations as
a constant. Ideally, this number is related to the time step: the solver
should run more Newton iterations as the time step increases for
more accurate results. But even if we run a single Newton iteration
for a large time step, i.e., Δ𝑡=1/10s, our method can still guarantee
intersection-free with far fewer artifacts than existing collision
handling algorithms, as shown in Fig. 19.

6.2 Elastic and Repulsive Models
To simulate the codimensional deformable body examples shown in
Fig. 2, we provide a number of elastic models in our dynamics solver,
including the St. Venant-Kirchhoffmodel for tetrahedral meshes, the
co-rotational linear model and the quadratic bending model [Bergou
et al. 2006] for triangular meshes, and the mass-spring model for
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(a) The initial state (b) The falling state (c) The sliding state

Fig. 12. Rotating sphere. When a square cloth patch falls onto a rotating
sphere, it generates multiple folds and wrinkles due to its frictional contacts
with the sphere and the ground floor.

hair strands. The eigensystems of Hessian matrices for these en-
ergy models have been analyzed [Choi and Ko 2002; Etzmuß et al.
2003; Smith et al. 2019; Teran et al. 2005] and one only needs to
compute, at most, 3 × 3 singular value decomposition and eigende-
composition for PSD projection which can be efficiently done on a
GPU [Gao et al. 2018; Melax 2017]. Some other energy models can
also be incorporated into this framework, such as the discrete shell
model [Grinspun et al. 2003] which requires a larger (12× 12) eigen-
decomposition for PSD projection [Chen et al. 2022; Li et al. 2021].
Instead, we simply apply the quadratic bending model [Bergou et al.
2006] that bypasses the PSD projection for efficiency. Similar to
many other simulators [Li et al. 2020b; Narain et al. 2012; Tang
et al. 2016, 2018b], our simulator incorporates a quadratic repulsive
model into deformable body dynamics to reduce complex collisions
in simulation.

6.3 Frictional Contacts
We adopt the velocity filtering approach proposed in [Bridson et al.
2002] to handle frictional contacts. First, we run the dynamics solver
to compute a target state y[𝑘+1] with no friction. We then calculate
penetration depths to estimate collision impulses and use them
to compute associated frictional impulses by Coulomb’s law as
well. Finally, we update y[𝑘+1] based on both impulses and treat
it as the new target state for collision handling. We note that the
velocity filtering strategy is more suitable in deformable-rigid body
contacts than in self-body contacts, where such penetration depth
estimations are more inaccurate, especially for large time steps.
Fig. 12 demonstrates our current frictional effects achieved by the
velocity filtering.

7 RESULTS AND DISCUSSIONS
We run our simulator on an Intel Core i5-7500 3.4GHz CPU and an
NVIDIA GeForce GTX 2080 Ti GPU. Table 1 summarizes the statis-
tics and performance of our examples, and Table 2 provides major
parameters of our algorithm and their default values. Most results
are computed with a default 𝛿 = 1mm. Specifically, 𝛿 = 0.5mm is
used for the knotting examples in Fig. 1 and 𝛿 = 0.2mm is used for
the hair example in Fig. 2. Our examples include common bench-
marks involving complex collisions (Figs. 1 and 11), and virtual
garments of multiple layers dressed on human bodies (Fig. 20). Re-
lated animations are provided in the supplemental video. In general,
the cost of handling contacts depends on the number of colliding

Table 1. Statistics and performance. This table lists the time step size,
the maximum and mean numbers of steps, time cost spent by our two-way
method and the number of Newton iterations within a single time step
across different examples.

Name Time Avg. (Max.) Avg. (Max.) Newton
(#verts., #edg./#tri./#tet., ref.) step (s) # of steps cost (s) Iter.
Needle (10k, 20k, Fig. 9(f)) 1/20 46 (1304) 0.036 (1.942) 4
Blade (59k, 116k, Fig. 15) 1/20 55 (779) 0.267 (4.463) 4
Funnel (49K, 98K, Fig. 14a) 1/20 27 (675) 0.087 (2.161) 4
Funnel (49K, 98K, Fig. 14b) 1/40 23 (437) 0.055 (1.198) 4
Funnel (49K, 98K, Fig. 14c) 1/80 12 (165) 0.040 (0.776) 4
Funnel (49K, 98K, Fig. 14d) 1/160 10 (95) 0.029 (0.296) 4
Sphere (50k, 100k, Fig. 12) 1/100 19 (219) 0.044 (0.475) 2
Dress (30K, 60K, Fig. 20a) 1/100 39 (142) 0.133 (0.511) 1
Gown (27K, 51K, Fig. 20c) 1/100 32 (150) 0.092 (0.443) 1

Bow knot (71K, 142K, Fig. 1a) 1/100 5.4 (17) 0.034 (0.113) 1
Reef knot (37K, 71K, Fig. 1e) 1/100 7 (23) 0.024 (0.097) 1
Tube (25k, 51K, Fig. 11) 1/100 19 (54) 0.308 (1.500) 1
Mat (33k, 88K, Fig. 2a) 1/100 9 (128) 0.020 (0.303) 1
Hair (63K, 62k, Fig. 2c) 1/100 16 (503) 0.252 (15.821) 1
Sand (30K, - , Fig. 2e) 1/100 51 (160) 0.223 (1.550) 1

9.8

6.7

33.4
38.7

0.7
4.5

4.70.9
0.6 Dynamics solver: Gradient and matrix update

Dynamics solver: Matrix assemble

Dynamics solver: PCG solver

Proximity search

Backward step: Edge length constraints update

Backward step: Vivace graph coloring

Backward step: LCP solver

Forward step

Others

Fig. 13. Breakdown analysis.We visualize a typical breakdown of the cost
spent in each stage for the bow knot example. As shown in this figure, the
PCG solves and the proximity search are the two most computationally
expensive parts in our simulator.

Table 2. Parameters and their default values.

Symbol Meaning Value
𝐿 The limit on the number of steps 512 to 2,048
𝜖 The termination threshold 0.0001

𝐷min The proximity search lower bound 2mm
𝐷max The proximity search upper bound 4mm
𝛿 The constraint activation threshold 1mm
𝜎 The violation ratio limit 1.1
𝛾 The damping factor on movement 0.9

elements and the number of steps, which are in essence determined
by the time step and the geometric complexity. By default, the
step number limit 𝐿 is set to 512 when Δ𝑡=1/100s, and 2, 048 when
Δ𝑡=1/20s. In practice, our method typically converges, i.e., ∥r∥∞<𝜖 ,
less than 64 steps, far before reaching the step number limit 𝐿 as
Table 1 shows.

7.1 Breakdown Analysis
Fig. 13 provides a breakdown of the computational cost spent in the
bow knot example (Fig. 1). It shows that PCG solves and proximity
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(a) Δ𝑡 = 1/20s (b) Δ𝑡 = 1/40s

(c) Δ𝑡 = 1/80s (d) Δ𝑡 = 1/160s

Fig. 14. Funnel. We simulate this example with various time step sizes.
While our method reliably handles collisions at a large time step, i.e.,
Δ𝑡=1/20s, we recommend using a smaller time step in practice for more
accurate results with less numerical damping.

search are the two most time-consuming components in our simu-
lator. In comparison, the actual cost spent by the forward step and
backward step is much lower, i.e., occupying only 10.8 percent of
the total cost. It suggests that there is still a lot of room for further
improving the performance of our method. For instance, we could
leverage faster linear solvers and proximity search algorithms in
the future.

7.2 Sensitivity to Time Steps
While our method is safe and robust regardless of time step size,
its performance per step does drop as the time step increases. Fun-
damentally, this is due to more severe collisions and more steps
required for convergence in our method. In our experiment, we
test the funnel example with four time steps: Δ𝑡=1/160s, Δ𝑡=1/80s,
Δ𝑡=1/40s and Δ𝑡=1/20s, and we intentionally set 𝐿=65,536 so that
we can know how many steps are needed for convergence. Fig. 14
compares our simulation results in this example and Table 1 pro-
vides their performance. From the performance perspective only, it
is beneficial to use a larger time step to reduce the computational
overhead associated with every time step. However, due to the exis-
tence of numerical damping, we should avoid very large time steps
in actual applications.

7.3 Geometry Processing
Since our method works as a standalone module to resolve collisions,
it can be seamlessly integrated into geometry processing applica-
tions for intersection-free results. For instance, our method can fix
seriously self-intersecting animation frames robustly, such as the
blade example shown in Fig. 15. We can also apply our method to
enforce global injectivity in computing normal flows, such as the
ones shown in Fig. 16.

For the globally injective normal flow application, we first com-
pute y[𝑘+1] as below:

y[𝑘+1]0 = x[𝑘 ] ± 𝛽n[𝑘 ] ,
y[𝑘+1]
𝑖+1 (𝑣) = y[𝑘+1]

𝑖
(𝑣) + 𝛼 △y[𝑘+1]

𝑖
(𝑣),

y[𝑘+1] = y[𝑘+1]3 ,

(19)

in which n[𝑘 ] is the normal vector field of the surface at x[𝑘 ] , 𝛽 is
the flow speed, 𝛼 is the smoothing intensity and △ is the cotangent-
form [Desbrun et al. 1999; Meyer et al. 2003; Pinkall and Polthier
1993] discretization of the Laplace-Beltrami operator. We apply a
simple Jacobi iteration in parallel to smooth each vertex 𝑣 , repeating
the process three times to obtain y[𝑘+1] . Then we run our two-way
method for guaranteeing global injectivity. Finally, we get highly
similar results compared with [Fang et al. 2021] on all examples
taken from their benchmarks as shown in Fig. 16 within less than
1s.

7.4 Comparison to Existing Collision Handling Methods
As we argued above, the major problems of existing collision han-
dling algorithms [Harmon et al. 2008; Li et al. 2020b; Narain et al.
2012; Tang et al. 2018a, 2016, 2018b] for the step-and-project method
are their linear path assumption and inappropriate measurement of
the projection distance. Such issues are exposed in a simple example
as shown in Fig. 17: we initialize the angular velocity of various
magnitudes in plane, leading to different targets y[𝑘+1] with increas-
ing spin angles after the dynamics step. As the spin angle increases,
the actual trajectory of every vertex should be close to a helix pass-
ing through the pyramid obstacle surface under gravity. Therefore,
restricting to a linear path can make the algorithm difficult to find
a valid path not colliding with the obstacle, which might become
even impossible for complex shapes. Fig. 17(e) demonstrates such
an increasing difficulty: as 𝜃 increases, the inelastic impact zone
method [Harmon et al. 2008] implemented in ARCSim [Narain et al.
2012] requires drastically increasing cost to find a valid path. We
note that when 𝜃 reaches 125◦, the program cannot converge in two
hours no matter how we tune the parameters.
Instead, our method runs inexpensive forward steps to form a

piecewise linear path safely. In fact, this not only avoids expensive
CCD tests, but also greatly increases the chances to find a valid
path by exploring a larger space compared to a single line segment.
Furthermore, with the help of the additional edge length constraints,
the over-stretched artifacts arising from long-distance projection
are pleasingly removed. Consequently, our two-way method can
robustly remove all intersections along the path and reach a plau-
sible and collision-free result (see Fig. 18 and the supplemental
video) at a low cost (Fig. 17(e)). Theoretically, we note that taking a
given linear path and “bending” it into a piecewise linear one in the
feasible region is not unique to our approach. In fact, there exists
one class of inequality-constrained nonlinear optimization methods
that work in a similar way, i.e., the gradient (Newton) projection
method [Conn et al. 1988; Lin and Moré 1999; Nocedal and Wright
2006]: given a gradient (Newton) direction (a linear path), a well-
defined projection operator progressively projects the state into the
feasible region and forms a piecewise linear path.

Thanks to the high-quality results of our two-way collision han-
dling, the simulator using our method can generate more plausible
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(a) The initial state (b) Before repair (c) After repair (d) Before repair (e) After repair

Fig. 15. Cloth and blade colliding. In this example, five square cloth patches are dropped onto a sharp metal blade, and then they drape, slide and stack
under gravity. Our method reliably projects severely penetrated frames ((b) and (d)) to intersection-free states ((c) and (e)).

(a) The initial state (b) The positive flow (c) The negative flow

(d) The initial state (e) The positive flow (f) The negative flow

(g) The initial state (h) The positive flow (i) The negative flow

Fig. 16. Globally injective normal flow. Our method can also be applied
to enforce global injectivity in both positive and negative normal flows.

dynamics than existing collision handling methods when the time
step is large. ARCSim [Narain et al. 2012] and CAMA [Tang et al.
2016], two implementations of non-rigid impact zone optimiza-
tion [Harmon et al. 2008], are involved for evaluations. Note that
other implementations, such as [Harmon et al. 2008; Li et al. 2020b;
Tang et al. 2018a,b], should have similar behaviors due to similar
methodology we introduced above, though with different perfor-
mance. For fair comparisons, we run one Newton iteration starting
from the same x0 (namely x[0] ) with the same implementation and
parameter setting to obtain y[1] through the dynamics step, and
then we pass both x[0] and y[1] to different collision handling mod-
ules to obtain x[1] and update the velocity as v1 = (x[1] − x[0] )/Δ𝑡 .
The output x1 (namely x[1] ) and v1 will be used to initialize the
dynamics step again which is followed by the collision step, and

(a) x[𝑘 ] and y[𝑘+1]
when 𝜃 = 0◦

(b) x[𝑘 ] and y[𝑘+1]
when 𝜃 = 45◦

(c) x[𝑘 ] and y[𝑘+1]
when 𝜃 = 90◦

(d) x[𝑘 ] and y[𝑘+1]
when 𝜃 = 135◦
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(e) Time cost comparison with ARCSim [Narain et al. 2012]

Fig. 17. Spinning cloth patch. From (a) to (d), the spin angle 𝜃 between
x[𝑘 ] and y[𝑘+1] is increasing, and we use the color ramp to visualize the
region correspondence. As 𝜃 increases, it becomes increasingly challenging
for ARCSim to find a valid path, whereas our method is free of such drastic
growth in time cost (Fig. (e)).

we repeat this process for the rest steps. This keeps the entire step-
and-project processes all the same except for the switch between
different projection methods for comparisons.
We test three collision-handling modules with a wide range of

time steps to thoroughly observe the trend of their behaviors. When
we use a large time step, such as Δ𝑡=1/10s, obvious over-stretched
artifacts caused by long-distance projection are observed for both
ARCSim and CAMA while our method is almost free of this is-
sue and demonstrates better performance, as Figs. 19(a) to 19(c)
and 19(g) and the supplemental video demonstrate. As the time
step decreases, this problem should be gradually alleviated, as veri-
fied in the experiment: here, we decrease the time step by 1/1000s,
from Δ𝑡=1/10s to Δ𝑡=1/1000s, to simulate the same scene repeat-
edly. However, existing non-rigid impact zone methods still suf-
fer from visible artifacts when we use a moderate time step, such
as Δ𝑡=25/1000s (see Figs. 19(j) to 19(o)). By comparing the mean
vertex distance of their results with ours up to the same frame

(
∑𝑡𝑠

𝑡=0
∑𝑁−1

𝑖=0 ∥x𝑡𝑖,[ARCSim|CAMA]−x
𝑡
𝑖,ours ∥

𝑁 (𝑡𝑠+1) ,CLK = 1.2s, 𝑡𝑠 = ⌊ CLKΔ𝑡 ⌉, Fig. 19(i))
and visually observing the simulated results, we find that ARCSim
and CAMA become artifact-free and all three methods generate
similar results when Δ𝑡 decreases to about 1/125s (see Figs. 19(d)
to 19(f) and 19(h) and the supplemental video for details).
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(a) x[𝑘 ] and x[𝑘+1] by our method when
𝜃 = 45◦

(b) x[𝑘 ] and x[𝑘+1] by ARCSim when
𝜃 = 45◦

(c) x[𝑘 ] and x[𝑘+1] by our method when
𝜃 = 90◦

(d) x[𝑘 ] and x[𝑘+1] by ARCSim when
𝜃 = 90◦

Fig. 18. Trajectories avoiding collisions. Here, we track the trajectories
of nine vertices along one diagonal of the cloth patch, which are generated
progressively using our two-way approach. Compared to the impact zone
optimization implemented by ARCSim [Narain et al. 2012], our method
enables a curved path from x[𝑘 ] to x[𝑘+1] to resolve collisions without
the occurrence of intersections or spuriously stretched elements, while
limiting the path to a linear trajectory may fail to find a faithful solution at
a reasonable cost.

8 LIMITATIONS AND FUTURE WORK
While the experiments demonstrate the efficiency, robustness and
good quality of our collision handling algorithm, there is no guaran-
tee of a globally convergent approximate solution to Eq. (1). In fact,
compared to the recently developed incremental potential contact
(IPC) method [Li et al. 2021], all step-and-project methods seem to
lack theoretical guarantee of global convergence in exchange for
numerical efficiency. Therefore, we do not compare our method with
IPC directly in terms of performance for fairness reasons. Although
finding a convergent solution to Eq. (1) could be over-demanding
and unnecessary for a faithful simulation in graphics, analyzing
the compromise made by step-and-project methods and further im-
proving its convergence is definitely valuable future work. Besides,
our method does not consider friction modeling yet. Now it simply
imitates frictional effects using an additional velocity filter. When
aiming to replicate more realistic frictional contacts, it becomes
necessary for the method to handle collisions and frictions simulta-
neously. Finally, we are interested in implementing our method on
distributed systems comprising multiple GPUs to achieve real-time
performance on large-scale scenes. To fully leverage the capabilities
of distributed systems, we may have to thoroughly investigate the

communication mechanisms between tasks, processes and threads,
and thus devise efficient policies for parallelization and synchro-
nization.
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(a) CAMA (Δ𝑡 = 1/10s) (b) ARCSim (Δ𝑡 = 1/10s) (c) Ours (Δ𝑡 = 1/10s) (d) CAMA (Δ𝑡 = 1/125s) (e) ARCSim (Δ𝑡 = 1/125s) (f) Ours (Δ𝑡 = 1/125s)

(g) Time cost comparison (Δ𝑡 = 1/10s) (h) Time cost comparison (Δ𝑡 = 1/125s) (i) Mean vertex distance curve

(j) CAMA (Δ𝑡 = 25/1000s,
CLK = 1.05s)

(k) ARCSim (Δ𝑡 = 25/1000s,
CLK = 1.05s)

(l) Ours (Δ𝑡 = 25/1000s,
CLK = 1.05s)

(m) CAMA (Δ𝑡 = 25/1000s,
CLK = 1.2s)

(n) ARCSim (Δ𝑡 = 25/1000s,
CLK = 1.2s)

(o) Ours (Δ𝑡 = 25/1000s,
CLK = 1.2s)

Fig. 19. Robustness to large time steps. A piece of cloth (1m×1m) falling on a sharp cone is simulated with a decreasing time step, from Δ𝑡=1/10s to
Δ𝑡=1/1000s. Compared to existing impact zone methods such as [Narain et al. 2012; Tang et al. 2016], our method produces nearly artifact-free dynamic
simulation even with large time steps, exhibiting superior performance. In contrast, existing methods suffer from visible artifacts until the time step is reduced
to a small enough value.

A multi-layered dress A multi-layered gown
Fig. 20. Multi-layered clothing. Our method reliably handles complex collisions that occur among multiple layers of clothing worn by these dancing
characters.
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