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For similar behavior

what is the coarsened counterpart?
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[Kharevych 2009]

[Nesme 2009]

[Torres 2016]

Linear elasticity only
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Previous Works

[Chen 2015]

Data-driven (regression)

Rely on data set and parameter tuning
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Our Approach

• NOT Homogenize the constitutive model
which template energy model would you use anyway?

• BUT Approximate the solution space better
we can “adapt” the shape functions to the problem

estimate the shape on the fine mesh via the adapted shape functions

reuse input material via quadrature evaluations at runtime
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The Implicit Constraints

• Solving deformation via variational formulation minuΨ[u(p)].

A B

• continuous

in all possible functions
∀u(p)

full boundary conforming
uA(p) = uB(p), ..., p ∈ A ∩B
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In Summary

• Intra-element: not enough DOFs in each element
stiffer in each element

• Inter-element: missing conformity constraints between elements
softer among elements

• Striking a balance by asymptotically approximating the continuous case

intra-element: providing more DOFs to make it softer

inter-element: providing proper constraints to make it balanced

intra-element stiffness inter-element discontinuity
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How To Make It Work?

• Intra-element stiffness
scalar shape functions N(x) lacks enough DOFs, too stiff

use matrix-valued shape functions for more DOFs

with certain geometric conditions

• Inter-element continuity
too much discontinuity will over-soften the system

partially conforming for representative deformations

• Deformation regularization for the remaining DOFs
small strain or small energy

scalar-valued

N(X) =

s 0 0
0 s 0
0 0 s


matrix-valued

N(X) =

s11 s12 s13

s21 s22 s23

s31 s32 s33
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How To Make It Work?

• Intra-element stiffness
scalar shape functions N(x) lacks enough DOFs, too stiff

use matrix-valued shape functions for more DOFs

with certain geometric conditions

• Inter-element continuity
too much discontinuity will over-soften the system

partially conforming for representative deformations

• Deformation regularization for the remaining DOFs
small strain or small energy

Without deformation reg.

With deformation reg.



© 2018 SIGGRAPH. All Rights Reserved 6

Matrix-valued Shape Function

• For every coarse element ΩH

each vertex i is equipped with a shape function

NH
i : ΩH → Rd×d

element-wise interpolation

u(X) =
∑

Xi∈ΩH
NH
i (X)uHi , ∀X ∈ ΩH

generalized corotational treatment

u(X) = RΩH

[
X +

∑
i
NH
i (X)(RT

ΩHx
H
i −XH

i )
]
−X

I RΩH comes from the polar decomposition of average deformation gradient
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Adding Geometric Constraints

• Geometric conditions
translational invariance∑

i

NH
i (X) = I

rotational invariance∑
i

NH
i (X)[XH

i ]× = [X ]×

node interpolation

NH
i (XH

j ) = δijI

1 0

0 0
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Partially Conforming Conditions

• Make sure basic deformations are perfectly reproduced

• Compute “representative” deformations
global harmonic displacements

using stiffness at rest shape

• Enforce exact reproduction
6 more constraints for each element

hab(X) =
∑
i

NH
i (X)hab(X

H
i )

[Kharevych 2009]
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Deformation Regularization

• For the remaining DOFs, favor the shape functions leading small deformation

• In the set of all possible solutions, take the nicest ones∫
Ω

tr
(

(∇NH
i )T : M : ∇NH

i

)
dX

rank-4 tensor

R
egularization
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Deformation Regularization

• For the remaining DOFs, favor the shape functions leading small deformation

• In the set of all possible solutions, take the nicest ones∫
Ω

tr
(

(∇NH
i )T : M : ∇NH

i

)
dX

• Two obvious options
harmonic conditioning M = I: small strain

Ψ-harmonic conditioning M = ∂2Ψ/∂(∇u)2|u=0: small energy

rank-4 tensor

R
egularization
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Putting It All Together

• Computing shape functions amount to an optimization

min
N

∫
Ω

tr
(

(∇NH
i )T : M : ∇NH

i

)
dX

s. t.
∑
i

NH
i (X) = I∑

i

NH
i (X)[XH

i ]× = [X ]×

NH
i (XH

j ) = δijI∑
i

NH
i (X)hab(X

H
i ) = hab(X)

• constrained quadratic
programming per element

• can proceed in parallel
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Basis Discretization

• Each component of our matrix-valued basis functions is discretely
represented using the fine mesh basis functions

NH
i (X)p,q =

∑
j nij,pqN

h
j (X)

piecewise bilinear function

DOFs for basis optimization
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Remarks on DOFs

• Note that the DOFs for basis optimization and
DOFs for coarse simulation are different.

• E.g. for coarse mesh with a single element (2D)
basis optimization
I DOFs as matrix shape functions: nij,pq

coarse simulation
I DOFs as displacements: ui,j

4× 25× 2× 2 = 400
i j p q

4× 2 = 8
i j
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The Balance

• The coarse conforming element are generally stiffer in each element

we soften it via matrix-valued shape functions

• Discontinuous elements are usually too soft among elements

we impose partial conforming constraints

• Fine tune the balance
we regularize the deformation (small strain or energy) using the remaining DOFs

intra-element stiffness inter-element discontinuity
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Illustration of Local/Global Spectrum
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Illustration of Resulting Deformation
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Simulation

• Calculation of deformation gradient

∇Xx=∇Xu + I = (Re − I) +
∑
i

Re ⊗ (RT
e xi −Xi) :

∂NH
i

∂X
+ I

=Re +

(∑
i

Re ⊗ (RT
e xi −Xi) :

∂NH
i

∂ξ

)∑
j

Xj

∂N
H
j

∂ξ

−1

• Calculation of energy integral
standard Gaussian-Legendre quadrature
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Results
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Comparison with Trilinear basis

Traditional trilinear bases are overstiffening!
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Comparison with [Nesme 2009]

[Nesme 2009] uses diagonal shape function and strong conforming conditions.

[Nesme 2009] is too stiff as well



© 2018 SIGGRAPH. All Rights Reserved 6

Comparison with [Kharevych 2009]

We capture the details better even on linear elasticity



© 2018 SIGGRAPH. All Rights Reserved 6

Comparison with [DDFEM]

[DDFEM] relies on dataset and parameter tuning
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Dynamics
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Please see the video!
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Performance

Fine mesh: 31337 verts, 26176 cells

Coarse mesh: 4627 verts, 3272 cells

one level of coarsening
about 1/8 nodes
60x times faster!
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Limitations and Future Work

• Function of shape functions for very large deformation

• Coarsening of dynamical system with inhomogeneous mass distribution

• Coarsening of boundary conditions

• Better cubature schemes

• Space time coarsening

• ...

fine ours FEM
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