

#### Numerical Coarsening using Discontinuous Shape Functions

Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, Jin Huang

Zhejiang University, Caltech



© 2018 SIGGRAPH. All Rights Reserved





# Photography & Recording Encouraged



#### inhomogeneous & nonlinear material



inhomogeneous & nonlinear material

what is the coarsened counterpart?





## [Nesme 2009]



[Torres 2016]













#### [Chen 2015]





- NOT Homogenize the constitutive model
  - which template energy model would you use anyway?

#### **Our Approach**

GENERATIONS / VANCOUVER SIGGRAPH2018

- NOT Homogenize the constitutive model
  - which template energy model would you use anyway?
- BUT Approximate the solution space better
  - we can "adapt" the shape functions to the problem
  - estimate the shape on the fine mesh via the adapted shape functions
  - reuse input material via quadrature evaluations at runtime



- Solving deformation via variational formulation  $\min_u \Psi[u(p)]$ .
- continuous
  - in all possible functions  $\forall u(p)$
  - full boundary conforming  $u_A(p) = u_B(p), ..., p \in A \cap B$



GENERATIONS/ YANCOUVER SIGGRAPH2018

- Solving deformation via variational formulation  $\min_u \Psi[u(p)]$ .
- continuous

- conforming FEM
- in all possible functions  $\forall u(p)$
- limited solution space  $u(p) = \sum_{i} c_i N_i(p)$
- full boundary conforming full boundary conforming  $u_A(p) = u_B(p), ..., p \in A \cap B$   $u_A(p) = u_B(p), ..., p \in A \cap B$





- Solving deformation via variational formulation  $\min_{u} \Psi[u(p)]$ .
- continuous
  - in all possible functions  $\forall u(p)$
- conforming FEM

 limited solution space  $u(p) = \sum_{i} c_i N_i(p)$ 

- full boundary conforming - full boundary conforming - partial boundary conforming  $u_A(p) = u_B(p), ..., p \in A \cap B$   $u_A(p) = u_B(p), ..., p \in A \cap B$ 





B

A



- limited solution space  $u(p) = \sum_{i} c_i N_i(p)$ 
  - $u_A(p) = u_B(p), p \in C \subset A \cap B$

GENERATIONS / VANCOUVE



- Solving deformation via variational formulation  $\min_{u} \Psi[u(p)]$ .
- continuous
  - in all possible functions  $\forall u(p)$
- conforming FEM
  - limited solution space  $u(p) = \sum \text{Stiffer} \phi$
  - full boundary conforming full boundary conforming partial boundary conforming  $u_A(p) = u_B(p), ..., p \in A \cap B$   $u_A(p) = u_B(p), ..., p \in A \cap B$





- non-conforming FEM
  - limited solution space  $u(p) = \sum_{i} c$  Stiffer
    - $u_A(p) = u_B$  (Softer  $C \subset A \cap B$

GENERATIONS / VANCOUVE





- Intra-element: not enough DOFs in each element
  - stiffer in each element
- Inter-element: missing conformity constraints between elements
  - softer among elements
- Striking a balance by asymptotically approximating the continuous case

#### intra-element stiffness inter-element discontinuity



- Intra-element: not enough DOFs in each element
  - stiffer in each element
- Inter-element: missing conformity constraints between elements
  - softer among elements
- Striking a balance by asymptotically approximating the continuous case
  - intra-element: providing more DOFs to make it softer



- Intra-element: not enough DOFs in each element
  - stiffer in each element
- Inter-element: missing conformity constraints between elements
  - softer among elements
- Striking a balance by asymptotically approximating the continuous case
  - intra-element: providing more DOFs to make it softer
  - inter-element: providing proper constraints to make it balanced

inter-element discontinuity

#### How To Make It Work?

- Intra-element stiffness
  - scalar shape functions N(x) lacks enough DOFs, too stiff
  - use matrix-valued shape functions for more DOFs
  - with certain geometric conditions

scalar-valued

# $N(X) = \begin{bmatrix} s & 0 & 0 \\ 0 & s & 0 \\ 0 & 0 & s \end{bmatrix}$

GENERATIONS / VANCOUVER

SIGGRAPH2018

matrix-valued  $N(X) = \begin{bmatrix} s_{11} & s_{12} & s_{13} \\ s_{21} & s_{22} & s_{23} \\ s_{31} & s_{32} & s_{33} \end{bmatrix}$ 

#### How To Make It Work?

- Intra-element stiffness
  - scalar shape functions N(x) lacks enough DOFs, too stiff
  - use matrix-valued shape functions for more DOFs
  - with certain geometric conditions
- Inter-element continuity
  - too much discontinuity will over-soften the system
  - partially conforming for representative deformations



non-conforming in general

GENERATIONS / VANCOUVE

SIGGRAPH2018



conforming for representative cases



#### How To Make It Work?



#### Without deformation reg.

- Intra-element stiffness
  - scalar shape functions N(x) lacks enough DOFs, too stiff
  - use matrix-valued shape functions for more DOFs
  - with certain geometric conditions
- Inter-element continuity
  - too much discontinuity will over-soften the system
  - partially conforming for representative deformations
- Deformation regularization for the remaining DOFs
  - small strain or small energy



With deformation reg.



#### **Matrix-valued Shape Function**



- For every coarse element  $\Omega^H$ 
  - each vertex *i* is equipped with a shape function

 $N_i^H : \Omega^H \to \mathbb{R}^{d \times d}$ 

- element-wise interpolation

$$u(X) = \sum_{X_i \in \Omega^H} N_i^H(X) u_i^H, \quad \forall X \in \Omega^H$$



#### **Matrix-valued Shape Function**



- For every coarse element  $\Omega^H$ 
  - each vertex *i* is equipped with a shape function

 $N_i^H: \Omega^H \to \mathbb{R}^{d \times d}$ 

- element-wise interpolation

$$u(X) = \sum_{X_i \in \Omega^H} N_i^H(X) u_i^H, \quad \forall X \in \Omega^H$$

general anisotropic shape functions  $N_i^H$  needs a local frame!



#### **Matrix-valued Shape Function**



- For every coarse element  $\Omega^H$ 
  - each vertex *i* is equipped with a shape function

 $N_i^H: \Omega^H \to \mathbb{R}^{d \times d}$ 

- element-wise interpolation

$$u(X) = \sum\nolimits_{X_i \in \Omega^H} N_i^H(X) u_i^H, \quad \forall X \in \Omega^H$$

- generalized corotational treatment

$$u(X) = \mathbf{R}_{\mathbf{\Omega}^{H}} \left[ X + \sum_{i} N_{i}^{H}(X) (\mathbf{R}_{\mathbf{\Omega}^{H}}^{T} x_{i}^{H} - X_{i}^{H}) \right] - X$$

•  $R_{\Omega^H}$  comes from the polar decomposition of average deformation gradient



#### **Adding Geometric Constraints**



- Geometric conditions
  - translational invariance





#### **Adding Geometric Constraints**



- Geometric conditions
  - translational invariance

 $\sum_i N_i^H(X) = \mathbb{I}$ 

- rotational invariance

 $\sum_{i} N_i^H(X) [X_i^H]_{\times} = [X]_{\times}$ 



#### **Adding Geometric Constraints**



- Geometric conditions
  - translational invariance

 $\sum_i N^H_i(X) = \mathbb{I}$ 

- rotational invariance

 $\sum_{i} N_i^H(X) [X_i^H]_{\times} = [X]_{\times}$ 

- node interpolation

$$N_i^H(X_j^H) = \delta_{ij}\mathbb{I}$$



#### **Partially Conforming Conditions**



- Make sure basic deformations are perfectly reproduced
- Compute "representative" deformations
  - global harmonic displacements
  - using stiffness at rest shape
- Enforce exact reproduction
  - 6 more constraints for each element

 $h_{ab}(X) = \sum_{i} N_i^H(X) h_{ab}(X_i^H)$ 



#### **Deformation Regularization**



- For the remaining DOFs, favor the shape functions leading small deformation
- In the set of all possible solutions, take the nicest ones

$$\int_{\Omega} \operatorname{tr} \left( (\nabla N_i^H)^T : M : \nabla N_i^H \right) dX$$
  
rank-4 tensor



#### **Deformation Regularization**



• In the set of all possible solutions, take the nicest ones

 $\int_{\Omega} \operatorname{tr} \left( (\nabla N_i^H)^T : M : \nabla N_i^H \right) dX$ rank-4 tensor

- Two obvious options
  - harmonic conditioning  $M = \mathbb{I}$ : small strain
  - $\Psi$ -harmonic conditioning  $M = \partial^2 \Psi / \partial (\nabla u)^2|_{u=0}$ : small energy



GENERATIONS / VANCOUV

#### **Putting It All Together**



$$\begin{split} \min_{N} & \int_{\Omega} \operatorname{tr} \left( (\nabla N_{i}^{H})^{T} : M : \nabla N_{i}^{H} \right) dX \\ \text{s. t.} & \sum_{i} N_{i}^{H}(X) = \mathbb{I} \\ & \sum_{i} N_{i}^{H}(X) [X_{i}^{H}]_{\times} = [X]_{\times} \\ & N_{i}^{H}(X_{j}^{H}) = \delta_{ij} \mathbb{I} \\ & \sum_{i} N_{i}^{H}(X) h_{ab}(X_{i}^{H}) = h_{ab}(X) \end{split}$$

- constrained quadratic programming per element
- can proceed in parallel

GENERATIONS / VANCOUVER

#### **Basis Discretization**

• Each component of our matrix-valued basis functions is discretely represented using the fine mesh basis functions



GENERATIONS / VANCOUVER

#### **Basis Discretization**

• Each component of our matrix-valued basis functions is discretely represented using the fine mesh basis functions



DOFs for basis optimization

GENERATIONS / VANCOUVER

#### **Remarks on DOFs**



- Note that the DOFs for basis optimization and DOFs for coarse simulation are different.
- E.g. for coarse mesh with a single element (2D)
  - basis optimization
    - ▶ DOFs as matrix shape functions:  $n_{ij,pq}$



#### **Remarks on DOFs**



- Note that the DOFs for basis optimization and DOFs for coarse simulation are different.
- E.g. for coarse mesh with a single element (2D)
  - basis optimization
    - ► DOFs as matrix shape functions:  $n_{ij,pq}$
  - coarse simulation
    - ► DOFs as displacements:  $u_{i,j}$









• The coarse conforming element are generally stiffer in each element

intra-element stiffness

inter-element discontinuity





- The coarse conforming element are generally stiffer in each element
  - we soften it via matrix-valued shape functions
- Discontinuous elements are usually too soft among elements

intra-element stiffness inter-element discontinuity





- The coarse conforming element are generally stiffer in each element
  - we soften it via matrix-valued shape functions
- Discontinuous elements are usually too soft among elements
  - we impose partial conforming constraints

intra-element stiffness inter-element discontinuity





- The coarse conforming element are generally stiffer in each element
  - we soften it via matrix-valued shape functions
- Discontinuous elements are usually too soft among elements
  - we impose partial conforming constraints
- Fine tune the balance
  - we regularize the deformation (small strain or energy) using the remaining DOFs



inter-element discontinuity

















#### **Illustration of Resulting Deformation**





#### Simulation

GENERATIONS / YANCOUVER SIGGRAPH2018

• Calculation of deformation gradient

$$\nabla_X x = \nabla_X u + \mathbb{I} = (R_e - \mathbb{I}) + \sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial N_i^H}{\partial X} + \mathbb{I}$$
$$= R_e + \left(\sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial N_i^H}{\partial \xi}\right) \left(\sum_j X_j \frac{\partial \overline{N}_j^H}{\partial \xi}\right)^{-1}$$

#### Simulation

GENERATIONS / VANCOUVER SIGGRAPH2018

• Calculation of deformation gradient

$$\nabla_X x = \nabla_X u + \mathbb{I} = (R_e - \mathbb{I}) + \sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial N_i^H}{\partial X} + \mathbb{I}$$
$$= R_e + \left(\sum_i R_e \otimes (R_e^T x_i - X_i) : \frac{\partial N_i^H}{\partial \xi}\right) \left(\sum_j X_j \frac{\partial \overline{N}_j^H}{\partial \xi}\right)^{-1}$$

- Calculation of energy integral
  - standard Gaussian-Legendre quadrature

| 0 | 0 | 0 | 0 |  |
|---|---|---|---|--|
| 0 | 0 | 0 | 0 |  |
| 0 | o | 0 | o |  |
| 0 | o | 0 | ο |  |



# Results

#### **Comparison with Trilinear basis**





#### **Comparison with Trilinear basis**











#### **Comparison with [Nesme 2009]**





[Nesme 2009] uses diagonal shape function and strong conforming conditions.

[Nesme 2009] is too stiff as well

#### **Comparison with [Kharevych 2009]**





## We capture the details better even on linear elasticity

#### **Comparison with [DDFEM]**





## [DDFEM] relies on dataset and parameter tuning













#### GENERATIONS / YANCOUVER SIGGRAPH2018









#### Performance





Fine mesh: 31337 verts, 26176 cells

Coarse mesh: 4627 verts, 3272 cells

one level of coarsening about 1/8 nodes 60x times faster!



• Function of shape functions for very large deformation





- Function of shape functions for very large deformation
- Coarsening of dynamical system with inhomogeneous mass distribution





- Function of shape functions for very large deformation
- Coarsening of dynamical system with inhomogeneous mass distribution
- Coarsening of boundary conditions





- Function of shape functions for very large deformation
- Coarsening of dynamical system with inhomogeneous mass distribution
- Coarsening of boundary conditions
- Better cubature schemes





- Function of shape functions for very large deformation
- Coarsening of dynamical system with inhomogeneous mass distribution
- Coarsening of boundary conditions
- Better cubature schemes
- Space time coarsening





- Function of shape functions for very large deformation
- Coarsening of dynamical system with inhomogeneous mass distribution
- Coarsening of boundary conditions
- Better cubature schemes
- Space time coarsening

fine ours FEM



## Thank You! Q&A

© 2018 SIGGRAPH. All Rights Reserved