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Fig. 1. Numerical coarsening of nonlinear materials. We introduce a new approach for numerically capturing the behavior of inhomogeneous and
nonlinear materials on coarse grids. For two composite models (left: plane with downwards forces exerted on wings; right: vase being twisted) made of two
different compressible neo-Hookean materials discretized on a fine mesh (Poisson ratio: 0.45; Young’s moduli: 1e3 and 5e4; volume rendering insets illustrate
the spatial distribution of their composite material), our coarsened model with eight times less elements (red) perfectly reproduces the original behavior, while
a regular FEM simulation using trilinear shape functions (green) on the same coarse mesh leads to drastic overstiffening.

In this paper, an efficient and scalable approach for simulating inhomoge-
neous and non-linear elastic objects is introduced. Our numerical coarsening
approach consists in optimizing non-conforming and matrix-valued shape
functions to allow for predictive simulation of heterogeneous materials with
non-linear constitutive laws even on coarse grids, thus saving orders of
magnitude in computational time compared to traditional finite element
computations. The set of local shape functions over coarse elements is care-
fully tailored in a preprocessing step to balance geometric continuity and
local material stiffness. In particular, we do not impose continuity of our
material-aware shape functions between neighboring elements to signifi-
cantly reduce the fictitious numerical stiffness that conforming bases induce;
however, we enforce crucial geometric and physical properties such as par-
tition of unity and exact reproduction of representative fine displacements
to eschew the use of discontinuous Galerkin methods. We demonstrate that
we can simulate, with no parameter tuning, inhomogeneous and non-linear
materials significantly better than previous approaches that traditionally try
to homogenize the constitutive model instead.
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1 INTRODUCTION
Efficacy in simulating complex deformable models is a long standing
goal in computer animation. As the demand for ever larger and more
complex simulation increases, so does the need for more elaborate
numerical methods whose computational costs grows only slowly
with the structural complexity of the object being simulated. Tradi-
tional animation methods can only capture the proper behavior of a
physical object if one uses a mesh fine enough to resolve the small-
scale heterogeneities, leading to prohibitive simulation time when
the fine scales are geometrically complex or have a drastically differ-
ent stiffness (such as veinal structures in an organ or microstructures
in a metamaterial). Simply ignoring these fine scales dramatically
affects the overall dynamics of the object: a coarse simulation can
fail to capture even the simplest deformation, at times rendering
the object dramatically more rigid than in reality—an archetypi-
cal example being the issue of locking in finite element modeling,
where incompressiblity is at odds with the conforming constraints
of low-order finite elements. As visual and manufacturing fidelity
calls for an increasingly widespread use of non-linear geometric
models and non-linear constitutive laws, the design of numerical
algorithms that combine efficiency and scalability is increasingly
pressing in graphics and computational physics.

Over the years, different strategies have been devised to address
this enduring problem in simulation. A first family of efforts uses
adaptive solvers to counteract the spurious numerical rigidity and
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obvious visual artifacts that coarse elements and low-order “shape”
(or “basis”) functions typically generate [Debunne et al. 2001; Grin-
spun et al. 2002; Narain et al. 2012]. Refinements (in the number of
elements and/or their polynomial orders) based on the local amount
of deformation are used to distribute degrees of freedom (DOFs)
where they are most needed. However, adaptive methods are often
difficult to implement without exhibiting popping artifacts, and
generally not very efficient at capturing the correct behavior of het-
erogeneous materials at low computational cost. A second family
of approaches focuses on model reduction instead, where the state
space dimension is kept small by limiting the space of possible defor-
mations, typically through modal analysis [Barbič and James 2005;
Krysl et al. 2001; Li et al. 2014; Pentland and Williams 1989]. Relying
on sparser approximations of the deformation space of a particular
homogeneous physical model can be very efficient when combined
with cubature schemes. However, model-reduced approaches typ-
ically introduce a mismatch between geometric and deformation
DOFs obfuscating the treatment of contacts and collisions. They
also suffer from a crippling high runtime complexity. More recently,
the concept of “numerical coarsening” has shown great promise. As
numerical outgrowth of homogenization theory [Bensoussan et al.
1978], coarsening refers to the idea that a complex geometric model
is embedded in a coarse mesh which is assigned “coarsened” (i.e.,
physically averaged) material properties to best match the behav-
ior of the original object [Kharevych et al. 2009; Nesme et al. 2009;
Panetta et al. 2015; Torres et al. 2016]. Coarsening has been proposed
through global (mesh-wide) or local (element-wide) optimization
such that simulation at runtime efficiently captures the correct dy-
namics even on coarse grids. However, methods of this class are
mostly limited to linear constitutive models, even if a recent exten-
sion to non-linear models has demonstrated good behavior through
stiffness scaling for homogeneous materials [Chen et al. 2017].
In this paper, we propose a new approach to numerical coarsen-

ing which captures the fine dynamics of an inhomogeneous and
non-linear elastic object using only a coarse discretization of its
geometry. Instead of trying to homogenize the composite material
present inside each coarse element, we achieve numerical coarsen-
ing through the computation of material-aware basis functions over
the coarse computational grid.We show that allowing discontinuous
and matrix-based shape functions while forcing them to properly
capture a set of key continuous deformations significantly reduces
the important issue of inter-element stiffness, i.e., the spurious effects
of conforming coarse elements on the resulting dynamics. Unlike
previous approaches, we are able to capture the non-linear stress-
strain behavior of complex materials, with no parameter tuning.

1.1 Related Work
We first review relevant work in finite element modeling and nu-
merical coarsening to help us motivate our simulation approach
and contrast it with current techniques.

Finite-element based simulation. Real-life objects are often highly
heterogeneous and best modeled by non-linear elastic models. Their
accurate simulation can be achieved using finite element modeling
(FEM) on tetrahedral or hexahedral elements, but at high computa-
tional cost as both geometric and material non-linearities require

dense discretization. Interpolation errors are also known to arise if
badly-formed shape functions are employed; in particular, local gra-
dients of these functions impose stringent requirements on simpli-
cial elements for linear finite elements [Shewchuk 2002] and necessi-
tate Jacobian-driven optimization for higher-order meshes [Johnen
et al. 2013]. A number of approximation issues referred to as locking
(parasitic shearing, incompressibility locking, membrane locking)
may appear in FEM as well, introducing spurious over-stiffening
when coarse elements are used [Prathap 1993]. While local re-
finements or degree elevation are typical ways to resolve them,
a whole family of methods based on “discontinuous Galerkin ele-
ments” have been proposed [Cockburn et al. 2011]: by removing
the constraint that elements (and thus, shape functions) must be
conforming to their neighbors, the space of possible deformations
is greatly increased—in fact, excessively so: it may create aphysi-
cal deformation, therefore artificial jump penalty terms have to be
added to prevent large discontinuities in practice. Non-conforming
elements that just share mid-edge points have been proposed for
developable shells [English and Bridson 2008] instead, but their pos-
sible extension to 3D has not been validated yet. Note finally that
harmonic shape functions over polyhedral elements [Martin et al.
2008] were also proposed to simulate elasticity with a greater de-
formation space than traditional simplicial elements; however, this
approach is not well suited for inhomogeneous elastic deformation
because shape functions are not adapted to the material composi-
tion. Balancing numerical efficiency and simulation accuracy thus
remains an enduring difficulty of traditional finite elements, prevent-
ing important applications varying from realtime surgical training
to rapid prototyping of metamaterials.

Constitutive model homogenization. Inspired by homogenization
theory (which targets the effective averaging of solutions of equa-
tions with rapidly varying coefficients [Bensoussan et al. 1978]), a
first set of numerical coarsening methods proposed to “upscale” the
heterogeneous elastic properties represented by a fine mesh into
anisotropic elastic properties of a coarse mesh that effectively cap-
tures the same constitutive model. Kharevych et al [Kharevych et al.
2009] compute a set of d(d+1)/2 harmonic displacements in dimen-
siond=2, 3 to capture how the finemesh behaves when linear forces
are applied to the boundary of the material; these representative
deformations of the objects are just enough to compute an effective
elasticity tensor for each coarse element, so that the potential en-
ergy of the coarse mesh exactly matches the integral of the potential
of the fine mesh within each coarse element. Only linear elastic
models can be coarsened though, limiting its use considerably (note
however that it was recently used to solve the inverse problem of mi-
crostructure optimization as well [Schumacher et al. 2015], enabling
the creation of metamaterials with prescribed bulk properties). Chen
et al. [2015] propose a data-driven extension of this potential energy
fitting idea to non-linear materials where now a coarse constitutive
model is found through linear regression based on a set of deforma-
tion samples obtained from random forcing. However, each coarse
element is homogenized individually, disregarding the physical cou-
pling that neighboring elements induce. Moreover, results are highly
dependent on the training set and the tuning of the parameters of
the regression. While these model-fitting methods do manage to
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homogenize the potential energy of complex materials, capturing
the correct dynamics would also require homogenizing the kinetic
energy by computing an effective mass matrix as well. In practice,
however, a coarse lumped mass matrix assembled from the fine
mesh is used as it introduces only minor inertial artifacts—but cali-
brating the frequency spectrum of homogenous materials through
simple rescaling of Young’s modulus [Chen et al. 2017] has shown
encouraging results towards full dynamics-aware coarsening.
Shape function optimization. Another approach for coarsening

consists in computing meaningful, “material-aware” shape functions
in an offline preprocessing step: using tailored basis functions on the
coarse elements that closely reproduce the possible deformations of
a complex material instead of the traditional polynomial functions
significantly improves the accuracy of simulation. This idea was
articulated as a local constrained quadratic optimization per coarse
node in [Owhadi et al. 2014], while local eigenanalysis was intro-
duced in [Efendiev et al. 2011] to tailor better material-adapted shape
functions. However, the locality of the solves involved in these two
methods generate shape functions that do not even satisfy partition
of unity, making them not amenable to general elasticity. Nesme et
al. [2009] proposed the computation of a shape function and stiff-
ness matrix per coarse element such that the deformation computed
using this single coarse element best fits the deformations of the fine
mesh it represents. They used boundary vanishing conditions and
assumed the interpolation for 3D displacements to be independent
in each Cartesian coordinate. Torres et al. [Torres et al. 2014, 2016]
further extended this approach for arbitrary boundary conditions
through condensation, and proposed a discontinuous matrix-valued
mapping from coarse to fine grids derived from the stiffness ma-
trix. Note that at runtime, these methods use a corotational-based
coarse simulation to improve their results by adding geometric non-
linearity: it makes the effective linear strain tensor more accurate for
large deformation by removing as much of the current local rotation
as possible. However, none can handle fully non-linear materials.

Multigrid solvers. While fundamentally different from numerical
coarsening which aims at finding a coarse solution without resort-
ing to computations on the original fine mesh, geometric multigrid
methods (GMG) use prolongation (and restriction) operators to
project a coarse solution onto a fine grid (and vice versa) in order to
accelerate computations. The accuracy of this mapping from coarse
to fine and fine to coarse is key in the efficiency of a solver; yet cur-
rently, most multigrid methods (e.g. [McAdams et al. 2011]) simply
construct prolongation operator through geometric interpolation
without much consideration of the equation they are solving: any
error in this mapping will get corrected based on subsequent com-
putations on the fine grid. Our coarsening work may thus be useful
for GMG as it provides an accurate finite-dimensional map between
various resolutions through a careful design of shape functions.

1.2 Contributions
Based on our review of previous works, a few comments are in order.
First, while it was recognized early on that an assembly of different
isotropic materials is in general anisotropic [Kharevych et al. 2009],
all methods so far have relied on scalar shape functions, instead of
embracing the unavoidable anisotropy by using general tensorial

shape functions to interpolate through linear transformations. Sec-
ond, current coarsening methods upscale each coarse element, but
do not address the negative (generally over-stiffening) effects that
conforming (geometrically continuous) discretizations can induce.

In this paper, we show that coarsening via the construction of dis-
continuous and matrix-valued shape functions satisfying important
geometric and physical material-aware properties offers a signifi-
cantly more flexible and general approach to coarsening. From a
pair of regular grids representing respectively a fine and a coarse
geometric description of the elastic body, we devise a numerical pro-
cedure to turn the heterogeneous and non-linear elastic properties
of the fine mesh into a set of material-aware shape functions over
the coarse mesh to better capture the solution space of the fine mesh.
Our matrix-valued shape functions are expressed in individual coro-
tational frames, reminiscent of the frame-based approach of [Faure
et al. 2011; Gilles et al. 2011], to better capture the non-linearity
of a material on the coarse grid. Optimizing these shape functions
involves no heuristics or parameter tuning, but a simple constrained
quadratic programming problem which adapt these functions to
the material while keeping key properties such as partition of unity
and infinitesimal rotation invariance. The resulting shape functions
do not suffer from the fictitious numerical stiffness of conforming
bases, and exactly reproduce a set of representative deformations of
the object. The coarsened dynamical system can then be deformed
with a computational complexity nearly proportional to the size of
the coarse mesh for any non-linear constitutive model, with a visual
accuracy decaying gracefully with the size of the coarse mesh.

2 DISCONTINUOUS, TENSORIAL SHAPE FUNCTIONS
We begin our exposition by defining the goals of numerical coars-
ening, and deriving the general form that our shape functions will
take to be sufficiently expressive to capture complex deformation.

2.1 Elastic behavior
Given a deformable object occupying a d-dimensional spatial do-
main Ω ⊂ �d at rest, its deformation can be encoded via a dis-
placement field u : Ω→�d . For a given external force field (and
possibly some position constraints) the object will deform, giving
rise to a deformation field over the reference (material) domain
Ω. Mathematically, the resulting displacement u∗ can be described
variationally: it is a constrained minimization (sometimes referred
to as a elastostatics problem), which defines u∗ as the deformation
leading to the minimum elastic potential energy subject to external
forces and constraints; i.e.,

u∗ = argmin
u

∫
Ω
Ψ(u)dX +

∫
Ω
〈f ,u〉 dX s. t. C(u) = 0 (1)

where Ψ is the elastic potential density of the object defined over
the undeformed shape Ω, f represents the external force field, and
C encodes the deformation constraints (such as prescribed nodal
displacements for instance).

2.2 Fine vs. Coarsened Finite Element Modeling
Finding a deformation given external forces requires computations.
Let us describe how this would be done on a fine mesh, then how
this could be approximated on a coarsened mesh instead.
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Fine shape functions. To numerically solve the problem given
by Eq. (1), Finite Element Modeling (FEM) proceeds by discretizing
the domain Ω into a fine mesh Ωh with a set of nodesXh

i and a num-
ber of elements Ωh

e formed by these nodes. For each element Ωh
e , a

scalar shape function Nh
e,i : Ω→� per corner node Xi is defined as

well so that they sum to one (partition of unity) and Nh
e,i (Xh

j ) = δi j
(Lagrange property). Linear functions for tetrahedron meshes and
trilinear functions for regular grids are often selected for their sim-
plicity. With this setup, a continuous deformation u can be encoded
as one displacement uhi =u(Xh

i ) per node Xh
i , since the deformation

field can be interpolated to the rest of the domain via:

∀X ∈ Ωh
e , u(X ) =

∑

Xh
i ∈Ωh

e

Nh
e,i (X )uhi . (2)

Note that the discretization presented here is far from general: many
variants exist. However, this particular one is commonly used be-
cause it is very local (each node only has an influence on its imme-
diate neighboring elements) and interpolating (due to the Lagrange
property). Moreover, the variational problem of Eq. (1) can now
be discretized and solved efficiently for a function u∗ in a finite
dimensional subspace parameterized by {uhi }i .

Coarsened shape functions. For the above FEM procedure to pro-
vide an accurate deformation, each mesh element should only de-
scribe a small and homogeneous part of the deformable object. As
a consequence, finding the deformation of an inhomogeneous ob-
ject with high contrast in material stiffness and strong non-linear
stress-strain behavior requires an inordinate count of elements, pre-
cipitously increasing the computational cost involved in dealing
with such a fine mesh. Therefore, most numerical coarsening meth-
ods begin by reducing the spatial resolution, through a coarse mesh
ΩH for which each element ΩH

e is an assembly of fine elements
from Ωh , and where the nodes of ΩH are a subset of the fine nodes
of Ωh . We adopt the same strategy in our work: we assume that both
fine and coarse meshes are regular grids to make our explanations
(and the implementation) easier, but other spatial arrangements can
be used as well. For this coarse mesh to be able to resolve nearly
the same deformation at a fraction of the computational cost, we
need to optimize the shape functions NH

e,i : using the same trilinear
basis functions as on the fine grid would simply fail to capture the
complexity of the physical behavior of the deformable object (see
Figs. 1 and 18 for instance). Instead, one should use shape functions
such that their span covers the span of the fine basis functions, and
is expressive enough to reproduce the typical deformation of the
object at hand: only then can we hope that solving the variational
problem of Eq. (1) on the coarse grid is nearly equivalent to the
more computationally intensive solve on the fine grid.
For simplicity, we will omit the subscript e from now on: the

notation NH
i will be used instead of NH

e,i to refer to a basis function
associated to the node XH

i of a certain coarse element ΩH
e .

2.3 Piecewise-trilinear shape functions
In order to offer enough flexibility compared to the fine grid, each
coarse shape function NH

i over a coarse element ΩH
e for a coarse

nodeXH
i ∈ΩH

e can be defined using the fine grid: the shape function

XH
i

Xh
jΩH

e
Nh
j (X )

Fig. 2. Piecewise bilinear shape functions. A 2D coarse element (left)
and its associated fine elements and fine vertices used to discretize its
shape functions (center). Each fine node is associated with a local basis
function (right, depicted via height field), which consists of piecewise bilinear
functions defined on its directly adjacent fine elements.

is discretized by values on the fine nodes Xh
j contained within this

coarse element, and interpolated via the fine shape functions Nh
j

(see the 2D illustration in Fig. 2). In other words, while the fine mesh
uses trilinear shape functions, a coarse shape function NH

i over the
element ΩH

e is now a piecewise-trilinear function defined as:

∀X ∈ ΩH
e , NH

i (X ) =
∑

j
ni j N

h
j (X ), (3)

where the coefficients ni j are now degrees of freedom that can be
optimized at will, representing the coarse nodal basis NH

i sampled
on the fine nodes Xh

j ∈Ωh
e .

2.4 Corotational matrix-valued shape functions
While piecewise-trilinear coarse shape functions offer much added
degrees of freedom, they suffer a key limitation: when used to in-
terpolate a deformation from coarse values uHi on the coarse mesh,
the deformation field will interpolate each coordinates of uHi inde-
pendently, since now Eq. (2) reads on the coarse mesh as:

∀X ∈ ΩH
e , u(X ) =

∑

Xi ∈ΩH
e

NH
i (X )uHi . (4)

This means that any displacement in the x-direction of a node value
uHi will only affect the x-coordinates of the reconstructed field—a
very limiting interpolation of complex deformation.

Matrix-valued shape functions. Yet, typical elastic deformation
exhibits strong coupling between coordinates, for instance in ma-
terial with high Poisson ratio. We thus propose to turn the usual
scalar-valued shape functions intomatrix-valued shape functions:

NH
i : Ωe → �d×d ,

to best exploit the inevitably-anisotropic behavior of complex ob-
jects: our interpolation now involves general linear transformations
that couple dimensions and handle anisotropy naturally. This is eas-
ily done with our previously-introduced piecewise-trilinear setup
by now considering the degrees of freedom ni j to be d×d matrices
instead of scalar values.

Corotational formulation. The use of tensorial shape functions
comes with an immediate challenge, though. A tensor requires a
frame in which to express it as a matrix. The natural choice of a
fixed Cartesian frame is, alas, not appropriate since the interpolation
would no longer be rotation invariant: an added global rotation
would change the relative displacements within elements. This issue
is easily resolved by adding a notion of local frame, similar to what is
widely used in corotational methods. First, we estimate a local frame
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Re for each coarse element ΩH
e through a simple procedure: we

interpolate the current node displacements via simple trilinear shape
functions N i over the coarse element and evaluate the deformation
gradient ∇x =∇u + � at the center of the element; the frame Re is
then defined as the rotation matrix of the polar decomposition of ∇x .
The shape functions are then used in this local frame to interpolate
the deformation field through:

u(X )=Re
[
X +

∑
i
NH
i (X )(RTe xHi − XH

i )
]
− X . (5)

When NH
i (X ) is linear precise (i.e.,∑i N

H
i (X )XH

i =X ∀X , which
holds for trilinear functions N i ), the above equation simplifies to
the classical corotational formulation used in linear elasticity anima-
tion [Müller and Gross 2004]. Our expression is thus a corotational
treatment of our generalized matrix-valued shape functions, allow-
ing us to enforce an artifact-free interpolation of deformation fields
within each element.

2.5 Discussion
Note that our construction of coarse shape functions uses a number
of DOFs stored on the fine grid to capture the complexity of the fine
structure with only a small amount of coarse nodes, as already pro-
posed in [Owhadi et al. 2014] for instance. However, our use of d×d
matrices for ni j instead of scalars uses 4 times more memory in 2D,
and 9 times more in 3D: we are thus, in a way, trading memory for
expressiveness. The resulting coarsened shape functions will, how-
ever, allow for simulations with similar or better visual results than
their less memory-consuming counterparts as we will demonstrate
in Sec. 4. Finally, this choice of extended shape functions creates a
possibly discontinuous deformation field when coarse deformation
vectors are interpolated. We discuss next how to restrict this high
dimensional set of shape functions to guarantee that they ensure a
good balance between geometric continuity of the deformation and
local respect of material behavior.

3 DESIGN OF MATERIAL-AWARE SHAPE FUNCTIONS
While we introduced a new expression for coarsened shape func-
tions, not every function in this large allowable space is a valid
candidate for accurate simulation. In this section, we identify key
properties that shape functions should satisfy for a given inhomo-
geneous, non-linearly elastic material. We then propose an opti-
mization procedure to construct the actual shape functions. Special
attention is paid to balance geometric continuity and local stiffness.

3.1 Geometric conditions
Basic geometric properties of shape functions need to be preserved
in our setting to avoid aphysical behavior.

Geometric invariance. If an object is simply translated or rotated,
its strain should not changed: it would introduce spurious artifacts
otherwise. In order to render our discretization translation invariant,
we enforce the following condition on each coarse element ΩH

e :
∑

i
NH
i (X ) = �, (6)

where � is the d × d identity matrix. This is simply the traditional
partition of unity, extended to our tensor case. Similarly, if the object

rotates with a constant angular velocity ω, we need to enforce:

ω × X =
∑

i
NH
i (X ) ω × XH

i , ∀ω
to avoid spurious strains. Using the matrix notation [·]× defined
such that the cross product a × b is expressed as [b]× a, this reads:

[X ]× =
∑

i
NH
i (X ) [XH

i ]×. (7)
Node interpolation. We also enforce the traditional Lagrange prop-

erty, i.e., if δi j is the Kronecker delta function, we must have:

NH
i (XH

j ) = δi j � . (8)

This property guarantees that coarse nodes are properly interpo-
lated, which is crucial for point constraints or collision handling.

3.2 Physical conditions
Assuming they satisfy the basic geometric properties we just de-
scribed, our coarsened shape functions still have the difficult role
of having to reproduce as much as possible the physical behavior
captured by the fine grid. In order to render our shape functions
material-aware, we compute a set of representative deformations
and constrain our shape functions to reproduce those exactly. We
follow the approach of [Kharevych et al. 2009] that proposed to solve
d(d+1)/2 global “harmonic” displacements {hab }ab (a,b ∈ {1, ..,d})
on the fine grid to characterize how the fine mesh behaves under a
set of chosen boundary conditions, see Fig. 3. These deformations
are found by solving the following linearized elastostatic problems
with Neumann boundary conditions:

∇ · σ (hab ) = 0, inside Ω,

σ (hab ) · n =
1
2 (eae

T
b + ebe

T
a ) · n, on ∂Ω,

(9)

where σ is the stress tensor and ea refers to the unit vector in the
a-th coordinate direction. Note that these displacements are found
through a simple linear system even if the material constitutive
model is non-linear: we consider the Hessian of the potential energy
to be constant, and equal to Hess(Ψ) evaluated at u=0 (i.e., we use
the stiffness matrix of the object at rest). Indeed, a full non-linear
solve would necessitate a choice of boundary traction magnitude,
whereas the linearized version of [Kharevych et al. 2009] needs
no such parameter: in linear elasticity, the deformation is simply
proportional to the traction magnitude. This amounts to a global
infinitesimal “probing” of the object by a set of linear traction fields
on the boundary. As proposed in [Kharevych et al. 2009] (and more
recently in [Schumacher et al. 2015]), we fix the last six degrees
of freedom (translation and rotation) of Eq. (9) by fixing the zero-
th and first moments, resulting in a unique solution. As we will
discuss later on, these deformation fields are enough to make our
shape functions material-aware, thus bypassing the need for a full
non-linear treatment.
Once the characteristic deformation fields hab are found, we

require our shape functions to precisely reconstruct them, that is,

hab (X ) =
∑

i
NH
i (X ) hab (XH

i ). (10)

Note that this condition imposes 6 constraints per coarse element in
3D (3 in 2D). Our shape functions will then accurately represent any
deformation that is a linear combination of harmonic displacements.
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Moreover, since exact reproduction of representative displacements
is guaranteed by construction, it induces a weak enforcement of
geometric continuity of the coarsened shape functions: possible dis-
continuities introduced by our use of local frames are suppressed
on a series of characteristic deformations, without the non-physical
penalty terms often used in Discontinuous Galerkin methods; a
deformation will exhibit discontinuity only if it is not in the span of
our harmonic displacements.

3.3 Numerical conditioning
An important measure of numerical conditioning of a shape func-
tion is through the norm of its gradient: an element is badly shaped
if its basis functions are not able to capture local gradients prop-
erly, which usually negatively affects the condition number of the
stiffness matrices in linear finite elements [Shewchuk 2002]. The
same conditioning requirement is valid in higher order shape func-
tions, and significant efforts in meshing are spent to make sure
the local Jacobian of a parameterization is non-degenerate [Johnen
et al. 2013]. In our context, the elements are not the issue: they are
regular hexahedra; but their associated shape functions have not
been restricted to be well conditioned in any way so far.

If our shape functions were scalar functions, a simple functional
to minimize in order to offer good conditioning would be the usual
Dirichlet energy, ubiquitous in graphics: its minimization favors
equidistribution of gradients throughout the domain. We propose
the same functional, but now for our tensor-valued functions: we use
the integral over a coarse element Ωe of theM-weighted Frobenius
norm of the gradient of our coarsened shape functions, i.e.,

∑
i

∫
Ωe

tr
(
(∇NH

i )T : M : ∇NH
i

)
dX (11)

whereM is a given symmetric d ×d ×d ×d rank-4 tensor (and ∇NH
i

is d × d × d tensor because we use matrix-valued functions).

Choice of M . Note that if M is chosen to be the identity tensor
M = �, this functional is simply the L2 norm of the gradient field.
Minimizing this functional will equalize the spatial distribution of
the shape functions, thus rendering them appropriate for numerical
simulation. Another choice ofM is interesting as well in our context:
if one expands the nonlinear potential energy density Ψ around the

x

y

z

Fig. 3. Harmonic deformation. Using six different linear solves, the “har-
monic displacements” [Kharevych et al. 2009] of a given composite material
(here, an object with alternating layers of a stiff and a soft material) are
computed from a set of linear traction fields on the boundary.

rest state to the second order, one finds

Ψ(�+∇u) ≈ Ψ(�) + ∂Ψ
∂F

(�) : ∇u + 1
2 (∇u)

T : ∂
2Ψ

∂F 2
(�) : ∇u,

where we used F =�+∇u for the deformation gradient. Evaluated at
the rest state (u=0), this Taylor expansion reduces to a quadratic
form using the stiffness tensor ∂2Ψ/∂F 2 at rest, already leveraged
to find harmonic displacements in Section 3.2. Thus, one can also
use M = ∂2Ψ/∂F 2 |u=0: this is another smoothness measure of the
gradient fields of our shape functions, this time adapted to the
material model. We call these two conditioning functionals harmonic
and Ψ-harmonic respectively.

harmonic Ψ-harmonicFine

Fig. 4. Neo-Hookean composite bar. For the deformation of a composite
compressible neo-Hookean material (Poisson’s ratio is 0.45, Young’s mod-
ulus is 103 vs. 5 · 104) under gravity (left), using Ψ-harmonic conditioning
(right) makes the shape functions less conforming, resulting in a slightly
softer behavior compared to the basic harmonic conditioning (center). Bot-
tom insets visualize the reconstructed fine mesh to exhibit more clearly the
fine scale differences.

3.4 Constrained optimization
Solving for the optimal shape functions is now simple: we find, for
each coarse element, the corner shape functions that satisfy all the
geometric and physical conditions while being best conditioned.
This is achieved through a constrained quadratic optimization on
the degrees of freedom {ni j }i j . Thus, for each coarse element ΩH

e ,
we compute the solution to the following constrained minimization:

argmin
{ni j }

∑
i

∫
Ωe

tr
(
(∇NH

i )T : M : ∇NH
i

)
dX ,

s. t.
∑
i
ni j = �, ∀Xh

j ,

∑
i
ni j [XH

i ]× = [Xh
j ]×, ∀Xh

j

∑
i
ni jhab (XH

i ) = hab (Xh
j ), ∀Xh

j , ∀a,b

ni j = δi j �, ∀XH
i ,X

H
j .

(12)

This numerical optimization reduces to a quadratic optimization on
the matrices ni j with the linear constraints presented in Eqs. (6-8)
and (10). By assembling all the DOFs of a given element into a vector
ne , the constraints can be expressed as a linear system

Cne = y. (13)

To accelerate the solve while ensuring that these hard constraints
are met, we compute the kernelU ofC and find an arbitrary solution
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n0e of Eq. (13). We then rewrite the unknown vector as
ne = Uq + n

0
e , (14)

where now the subspace coordinate q is the new, smaller vector
to optimize for. In practice, we use Suitesparse’s QR solver [Davis
2017] to find the arbitrary solution and the kernel, and the reduced
coordinates of the shape functions are obtained by simply solving
a linear system to minimize the additional regularization. By con-
structing our shape functions with this optimization, the resulting
coarsening procedure applies to a much wider range of hyperelastic
materials, such as neo-Hookean models. This is in sharp contrast
with previous work like [Kharevych et al. 2009; Nesme et al. 2009]
that are limited to linear constitutive models. Moreover, because
our constraints include exact preservation of key “harmonic” defor-
mations, the numerical effect of inter-element coarsening is better
accounted for as our results will demonstrate in Section 4. Finally,
note that given that we use regular grids, one-level coarsening (i.e.,
each dimension reduced by a factor of two) results in 1944 DOFs for
basis discretizations per coarse element (8 vertices, each having 27
fine nodes to store the basis, and each node storing the 9 coefficients
of a matrix) while it goes up to 9000 for two-level coarsening. The
kernel dimensions of the constraints (i.e., the effective DOFs) in
these two cases are 684 and 4212 respectively.

Fig. 5. Harmonic vs.Ψ-harmonic conditioning.On a neo-Hookean com-
posite material (left), harmonic conditioning (center) outperforms material-
aware conditioning (right), although proper averaging of the fine node
positions to post-process discontinuities across coarse elements leads to
very similar visual results.

3.5 Balancing function continuity and local stiffness
Now that the precise optimization used to construct shape functions
have been formulated, the choice of harmonic vs. Ψ-harmonic con-
ditioning can be discussed in more detail. Ideally, basis functions
should be continuous between elements and they should properly
capture the local stiffness of their elements. But both conditions can
only be obtained for very fine grids that capture all the details of a
composite material.
Selecting M = � does promote inter-element continuity as illus-

trated in Fig. 4 as the local shape functions are made as smooth as
possible; however, this smoothness may introduce more potential
energy in coarse elements with an inhomogeneous material: forcing
continuity across elements puts a limit on how well the potential en-
ergy is approximated. The Ψ-harmonic conditioning, instead, allows
each single coarse element to relax to its minimal energy state while
only keeping the common nodes between neighboring elements
at the same location (due to the interpolation constraints). While
this will better match the local stiffness of the fine elements, the
inter-element discontinuities are allowed to be larger (see Fig. 4),
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Fig. 6. Coarsened eigenvalues. For a two-material linear elastic bar with
alternating stiffness, we compare the spectrum (eigenvalues of Ku =λMu ,
M being the lumped mass matrix) of the local stiffness matrix (for one
composite coarse element, left) and of the global stiffness matrix (right).
Our coarsening reproduces the spectrum significantly more accurately than
trilinear basis functions.

especially if neighboring coarse elements have widely different ma-
terial composition. Thus, this choice may soften the global behavior.
We will see in Section 4 that this analysis is confirmed by our

experiments. Fig. 6 demonstrates this behavior by exhibiting the
spectrum of the stiffnessmatrix of a composite linear elastic material,
for a single element as well as for the whole object. In particular, it
clearly highlights that traditional linear shape functions on a coarse
mesh make the results clearly too stiff because it completely elimi-
nates the inter-element discontinuity, significantly increasing the
inter-element stiffness. Note again that our approach sharply con-
trasts with the use of jump penalty terms in Discontinuous Galerkin
methods [Cockburn et al. 2011] which help to limit discontinuities
through non-physical regularization.

4 RESULTS AND EVALUATION
In this section, we first discuss how our method actually simulates a
coarsened object by providing a few relevant implementation details.
We then demonstrate the balance between geometric continuity
and material awareness that our numerical coarsening offers by
comparing its advantages over other existing methods.

4.1 Simulation of Coarsened Model
Once the coarsened basis functions NH

i have been computed for a
given fine object, simulating the deformation of this object subject to
an external force field and/or positional constraints proceeds mostly
like with a regular Finite Element Analysis solver—with the excep-
tion that our tailored shape functions are used in lieu of the usual
polynomial functions. We however point out a few implementation
details that we found useful in our own implementation.

Local frame estimation. The polar decomposition of the deforma-
tion gradient at the center of the parametric domain Ωe required to
express the displacement field in Eq. (5) can be computed only once
for every iteration of the solver: considering this frame constant per
iteration does not give rise to convergence issues or instabilities.

Pointwise deformation gradient. Evaluating the deformation gra-
dient can be achieved through quadrature, as typically done when
dealing with higher-order polynomial shape functions. To integrate
the elastic potential using a standard quadrature scheme, we map
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Fig. 7. Comparing with [Kharevych et al. 2009]. We compare our results (red) to theirs (green) for 4 examples involving linear elastic composite materials
(left). Histograms of mean and max displacement errors w.r.t. fine simulation averaged over 388 different tests are shown for both methods (right).

the element domain Ωe to the isoparametric domain [−1, 1]d (with
coordinates referred to as ξ ), and apply the chain rule to evaluate the
composition [Irving et al. 2006]: for each quadrature point on coarse
element, the actual pointwise gradient ∇Xx of the deformation is

∇Xx =∇Xu + � = (Re − �) +
∑
i
Re ⊗ (RTe xi − Xi ) :

∂NH
i
∂X

+ �

=Re +

(∑
i
Re ⊗ (RTe xi − Xi ) :

∂NH
i
∂ξ

)
��
�

∑
j
X j
∂N

H
j

∂ξ

��
�

−1 (15)

where u is the displacement field, X is the material point and N
H
i

are the conventional trilinear shape functions used in Sec. 2.4 to
estimate the local frames Re . Note that the tensor product symbol ⊗
between the matrix Re and the vector RTe xi −Xi generates a rank-3
tensor, which is then contracted against ∂NH

i /∂X .

Quadrature scheme. In our implementation,
if a coarse element contains nd fine elements,
we use a n-point Gaussian quadrature for each
dimension. The inset shows a 2D illustration
for a coarse element with 4 × 4 fine elements.
For each quadrature point, we can easily eval-
uate the deformation gradient using Eq. (15),
from which the pointwise elastic potential and its gradient can be
computed. Forces are then computed by a weighted sum of these
values at quadrature points with associated weights (approximating
their integral counterparts) as done in, e.g., [Irving et al. 2006].

Fine detail reconstruction. Because we enforced that our shape
functions interpolate the coarse nodes, visualizing the deformed
coarse grid is trivially achieved (we just displace a node XH

i by ui )
and does not require any blending. However, our optimized shape
functions also allow us to efficiently reconstruct the fine deformation
that a coarse deformation captures simply by using Eq. (5): detailed
anisotropic and non-uniform deformations are well captured, as
shown in Fig. 8. If watertight fine meshes are required for visualiza-
tion purposes, averaging of the fine nodes on each side of coarse
elements can be done to remove the generally small discontinuities
between elements during simulation.

Fig. 8. Coarsened vs. fine embeddings. The fine-scale accordion effect
created by a two-material composite (St Venant-Kirchhoff) object (dark
blue: stiff; light blue: soft) is well captured by the embedded 64-times finer
grid (see closeup), making the coarsened simulation material-aware.

Enriching representative displacements. In order to further reduce
inter-element discontinuity, a natural idea is to generate more rep-
resentative displacements and force their exact reproduction as we
did for the harmonic displacements. We tried to use the 200 lead-
ing eigenvectors of the tangent stiffness matrix ∂2Ψ/∂X 2 at rest as
additional constraints in Eq. (12). The results were nearly identical,
implying that this large number of additional constraints were, in
fact, nearly colinear to the six harmonic ones per coarse element.
Using global harmonic displacement or eigenvectors at deformed
states in a principled manner (and not just through random forcing
which could stiffen the results significantly) would be an interesting
extension that we leave as future work.

4.2 Advantages over representative methods
We tested our approach on a number of examples to demonstrate its
advantages compared to basic finite element analysis for coarse grids
and existing coarsening methods. Three different elastic models are
employed in this paper: linear elasticity, St Venant-Kirchhoff models,
and neo-Hookean models. For each composite model, Young’s mod-
ulus of the stiffer material is 50 times the one of the softer material.
The Poisson’s ratio of all the materials is set to 0.45 (except for the
stress test in Fig. 9 where we use 0.4999 to illustrate the absence of
locking or overstiffening in this challenging case).

Coarsening of homogeneous material. As a first test, we try our
method on a homogeneous material. As shown in Fig. 10, our results
obviously outperform the typical use of linear shape functions on
such a coarse grid: while usual FEM elements lead to significant
over-stiffening on coarse resolutions due to low-order polynomial
functions and conforming elements, our discontinuous tensorial
shape functions allow for a very accurate capture of deformation.
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Fig. 9. High Poisson’s ratio. Coarsening (center) of a homogeneous neo-
Hookean material with Poisson’s ratio 0.4999 shows nearly perfect agree-
ment with the finemesh simulation (left), while a traditional FEM simulation
(right) fails to handle this challenging case.

Fig. 10. Neo-Hookean arch. An arch-shaped bar made out of a homoge-
neous neo-Hookean material is bent via a fine grid (left); our coarsened
simulation matches the shape (center); regular trilinear shape functions fail
to capture large deformation in the legs and the curvature of the bar (right).

Relation to [Kharevych et al. 2009]. Themost significant advantage
of our method over the work of Kharevych et al. [2009] is the ability
to handle non-linear constitutive models (e.g., the neo-Hookean
material in Fig. 4). If we apply our method to corotational linear
elasticity, our results are visually comparable to their upscaling
of the elasticity tensor, which is to be expected as we use their
harmonic deformations to optimize our shape functions. We even
perform better in terms of coarse node displacement errors (both in
mean and max) as illustrated by the histogram in Fig. 7, obtained
by running 388 different deformation test examples.

Relation to [Nesme et al. 2009]. Similarly, the original approach
of Nesme et al. [2009] cannot handle non-linear materials either.
While they also use a co-rotational treatment, our use of tensorial
shape functions offers more degrees of freedom to capture the be-
havior of an arbitrary composite material. Moreover, one can argue
that their use of a clamped far boundary condition per element
helps improve inter-element continuity by construction. The obvi-
ous adverse effect is, however, an increase in the global stiffness.
We can try to reproduce this condition in our method by adding
it as a constraint—at the cost of removing the constraint of exact
preservation of the key “harmonic” deformations (see Section 3.2)
since the two constraints would be in conflict. For numerical condi-
tioning, the Ψ-harmonic regularization is better than the harmonic
one in this case (M = � is nearly identical to using trilinear func-
tions). Still, as shown in Fig. 11, this clamped boundary treatment
induces stiffness by favoring conforming elements, indicating that
their per-coordinate coarsening approach with clamped boundary
fails to capture complex material behavior. Our results are much
closer to the real material’s behavior, as our matrix-valued shape
functions reproducing harmonic displacements reduce the local
stiffness engendered by neighboring elements as much as possible.

Relation to DDFEM. Our experiments with [Chen et al. 2015] in-
dicates a strong dependence of their technique on the training set:
following their dataset generation strategy, we generated two dif-
ferent training sets using different magnitudes of forces, and find
the results to be significantly different, see Fig. 12. Their reliance
on a regularization weight also requires time-consuming manual
tuning. If a small regularization is chosen, their per-element coars-
ening with no conforming constraints leads to overly soft results;
conversely, a high regularization weight will overly stiffen all coarse
elements, see Fig. 13. This is a serious practical limitation: if differ-
ent parts of an object have different material compositions (e.g., a
bar with its left part being homogeneous and its right part being
inhomogeneous), no uniform weighting parameter will be adequate:
a proper weighting really depends on the material composition in
the neighboring elements. With our global harmonic reconstruc-
tion constraints, our method successfully gets rid of the need for a
manually fine-tuned parameter or a choice of force magnitude.

4.3 Conditioning choice
We also tested both conditioning functionals discussed in Section 3.3.
The material-based conditioning induces softer results than the fine
mesh because inter-element discontinuity is not as strongly penal-
ized. Instead, the identity metric usually leads to better balance
between intra-element material awareness and inter-element con-
formation.We providemore comparisons between these twometrics
in Fig. 5. While the two functionals can be used, we recommend the
use of the simple unweighted Frobenius norm in practice.

Fig. 11. Deformation of neo-Hookean models. On four different tests,
a fine mesh simulation (left) is well reproduced by our coarsened grid where
harmonic conditioning has been used (center). For comparison, we also
show a coarsened model where clamped far boundary conditions [Nesme
et al. 2009] are imposed in lieu of harmonc displacements (right).
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Fig. 12. Influence of training set on DDFEM. The DDFEM ap-
proach [Chen et al. 2015] depends heavily on the training set, even for
homogeneous materials: a set of deformations based on small magnitude
random forcing (left) generates very different results than with 100-times
stronger forcing (right). Since force fields with larger variations will lead
to extreme local deformation, the incompatible energy profile makes the
results much softer. A neo-Hookean model is used here.

λ = 0.1 λ = 0.02

λ = 0.02 λ = 0.1
Fig. 13. Limitations of DDFEM. Although these neo-Hookean objects are
composed of the exact same two materials sandwiched in the same pattern,
one has to apply different regularization weights to get visually consistent
results on coarse and fine meshes (upper row). Different weights leads to
significant error (bottom row).

4.4 Large deformation
Even though our method gets much lower mean displacement errors
than with traditional trilinear basis functions, the approximation
error of a coarse discretization increases with the magnitude of
the deformation. Consequently, our optimized basis functions may
fail to capture very large and highly nonlinear deformation, as
shown in Fig. 14: after all, the basis functions are only capable of
exactly reproducing the representative displacements at the rest
state. Since the basis functions are locally supported, we can still
expect low approximation error for a range of deformation even if
the basis functions are optimized around the rest state. However,
very large deformation of highly nonlinear elastic composite models
are bound to be challenging for our coarsening approach. How to
further transform basis functions to properly adapt to very large
deformation is an important and challenging problem to be tackled.

4.5 Coarsening of dynamics
Since our homogenized shape functions can capture a broad range
of deformation, they are ideally suited for elastostatics, i.e., finding
deformation for given force fields. However, they can also be used in
the more general context of dynamics using a lumped mass matrix
for coarse elements that is simply constructed by summing the
contributions from the fine mass matrix (see Figs. 15 and 16). This is,
however, an approximation as recognized in previous work [Chen
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Fig. 14. Displacement error for large deformation. Under various grav-
itational accelerations (from д to 20д), deformation grows and so does the
mean displacement error (MDE) for both optimized (red) and trilinear basis
functions (green), tested on 2 different examples of material composition
using a neo-Hookean model. Note that a large deformation of an ABAB
composite structure (left) is not well captured by our basis functions, while
an ABBA composite structure (right) is free of such issue.

et al. 2017; Kharevych et al. 2009]: phase errors will accumulate over
time (see Fig. 15). This is to be expected since we do not coarsen
the inertia and the associated basis functions for the velocity field,
and our shape functions are optimized in the rest state: these two
facts can lead to an inaccurate capturing of the natural frequency
of the dynamical system. As reported in previous works, this rarely
affects the visual impact of simulation. Fabrication methods may
require further improvements in this direction [Chen et al. 2017].

4.6 Performance and timing
The offline computation of our numerical coarsening approach re-
quires solving for d(d +1)/2 global harmonic displacements and
optimizing the coarse element shape functions. The cost of the first
step is mainly related to the size of the fine mesh and each harmonic
displacement can be computed in parallel. The computational time
required for the shape function optimization for a given coarse el-
ement is strongly influenced by the ratio between coarse and fine
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Fig. 15. Coarsened dynamics. Our method (top right) also captures the
dynamic behavior of a neo-Hookean composite material (top left)). The
curves (bottom) show the vertical displacement of the light-blue node in
time. Comparing with simple FEM coarsening (green), our result (blue)
matches the one of the fine mesh (red) much more closely.
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Frame 0

Frame 20

Frame 27

Fig. 16. Falling heart. The heart model with an empty chamber, whose fine
discretization has 89400 cells and 161060 nodes, is falling on the ground. For a
one-level coarsened model with 11175 cells and 28942 nodes, the simulation
using our optimized basis functions (middle) looks nearly identical (left),
while trilinear basis functions (right) lead to obvious inaccuracies.

grid elements; for instance, a matrix-valued shape function has 1944
(resp., 9000) DOFs for a coarse element containing 23 (resp., 43)
fine elements respectively. We provide timings for a single coarse
element’s optimization in Section 4.6 for various examples shown
in this paper. Note finally that all coarse elements can be processed
in parallel, and the computational complexity for basis optimization
only depends on the number of coarsening levels.

At runtime, positional constraints (used to anchor selected nodes
to a given position) are implemented as penalty, and Newton’s
methodwith trust region is used to solve the resulting unconstrained
optimization problem of Eq. (1). We terminate the Newton iterations
when the infinite norm of the gradient is less than 1e−6 or the num-
ber of iterations exceeds 20. Directly solving the problem on a fine
mesh using classical FEM is obviously slower that our coarsened
treatment by at least a factor proportional to the ratio between the
coarse and the fine grid sizes. When each coarse element contains
8 fine elements (that is, each dimension was coarsened by a factor
two), solving each linear system involved in a Newton iteration
takes 20 to 50 times less on the coarse mesh than on the fine mesh.
This acceleration can reach over 1000 times when each dimension
is coarsened by a factor 4. Moreover, convergence is typically faster
on coarse meshes (a well-known property exploited in multigrid
methods); our experiments confirm this fact too: as shown in Fig. 17,
the solver converges faster on the coarse mesh. The acceleration
factors due to faster linear solves are thus very predictive lower
bounds for the acceleration in wall-clock time of our coarsening ap-
proach. Overall, a single-level coarse simulation runs approximately

Table 1. Statistics. Timing (in seconds) of offline computations on a Xeon(R)
E5-2630 CPU. Complexity (in elements and vertices) of the fine and coarse
meshes are shown for each model. Columns denoted hab and ni j indicate
the time needed to solve one global harmonic displacement on the fine mesh
and the shape functions’ optimization for one coarse element respectively.

Model #Ωhe #node in Ωh #ΩH
e hab ni j

cube 4096 4913 64 2.15 7.5
aircraft 21328 26801 2666 29.82 0.25
bridge 5632 7565 704 2.79 0.25
beam 2048 2673 256 0.82 0.25
hand 26176 31337 3272 35.01 0.25

60 times faster than on the fine mesh, without significant visible
error; a two-level simulation typically runs over 1000 times faster
than its fine simulation.
Finally, the dynamic simulation in Fig. 15 is performed through

a variational implicit integrator [Martin et al. 2011], and achieves
similar speedups to the static case. Because of inertia, the deforma-
tion between two frames is relatively small, so the Newton solver
usually takes only 10 iterations on the fine mesh and 7 iterations on
the coarsened mesh.

5 LIMITATIONS AND FUTURE WORK
Our numerical coarsening through the optimization of shape func-
tions brings significant improvements upon previous methods fo-
cusing on capturing complex deformation at low computational cost.
In particular, combining the use of matrix-valued shape functions
and their element-wise corotational frames offers the ability to ex-
plore the careful balance between homogenization of each element’s
behavior and inter-element induced stiffness during simulation.
While our approach can capture composite materials made of

non-linear constitutive laws, we believe that a number of variants
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Fig. 17. Hand playing piano. For a coarsened hand model (right) whose
fingers dynamically bend under gravity, convergence of the solver based on
the (infinite norm of the) gradient (bottom) happens much earlier than for
the fine model (left), and takes about 1/60-th of the computational time.
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and extensions would be interesting to explore, and could further
alleviate the current limitations. First, the use of analytical shape
functions may be sufficient for simple materials, removing the need
for a large amount of DOFs and potentially allowing realtime use in
gaming. The spatial discretization of shape functions may at least
be adapted based on the local non-linearity of the material to reduce
the DOFs that need to be optimized without losing too much accu-
racy in the process. Second, better cubature schemes and solvers
may improve solver efficiency further. Third, providing a robust ap-
proach to numerical coarsening of dynamics using inhomogeneous
mass matrices would be an important extension that we have not
attempted to address. We believe that space-time coarsening may be
necessary to achieve accurate results. Fourth, applying our ideas to
acoustics or other physical modeling tasks would also be valuable.
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Fig. 18. Stress distribution. The trace of the (first Piola-Kirchhoff) stress
tensor exhibits a similar distribution for fine vs. coarsened meshes. On the
plane example of Fig. 1, we observe the expected large stretches (positive
trace on wing top, left) and compressions (negative trace on wing bottom,
right) over the parts of the plane containing the stiffer material.
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